Top 8 # Xem Nhiều Nhất Cách Vẽ Hình Lục Giác Trong Logo Lớp 5 Mới Nhất 2/2023 # Top Like | Techcombanktower.com

✅ Vẽ Hình Lục Giác Trong Photoshop, Cách Vẽ Hình Tam Giác Trong Photoshop

✅ Bài viết photoshop cơ bản full tại link: ✅Tổng hợp các file mình share ở trong này : ——————————————- 🚀 Khóa học PHOTOSHOP Online trên EDUMALL: 🚀 Khóa học PHOTOSHOP Online trên UNICA (CÓ X2 TỐC ĐỘ) : 🔹10 MÃ GIẢM GIÁ SẬP SÀN CÒN 199K ( NHẬP PTSKT202002 ): 🔹10 MÃ GIẢM GIÁ SẬP SÀN CÒN 299K ( NHẬP PTSKT202001 ): ——————————————- 🚀 Khóa học 3DSMAX NGOẠI THẤT – QUY HOẠCH Online trên UNICA (CÓ X2 TỐC ĐỘ) : 🔹5 MÃ GIẢM GIÁ SẬP SÀN CÒN 199K ( NHẬP 3DSMAXKT ): 🔹5 MÃ GIẢM GIÁ SẬP SÀN CÒN 299K ( NHẬP 3DMAX ): 🔹5 MÃ GIẢM GIÁ SẬP SÀN CÒN 399K ( NHẬP 3DMAXKTQH ): 🔹5 MÃ GIẢM GIÁ SẬP SÀN CÒN 499K ( NHẬP 3DMAXKT ): —————————————— 📕 Trải qua hơn 40 khóa học với hơn 3000 học viên VK STUDIO, 3DSMAX, PHOTOSHOP tự tin là khóa học toàn diện nhất, giúp bạn đổi mới tư duy thẩm mỹ – thuần thục 3DSMAX, PHOTOSHOP – Thiết kế kiến trúc, Nội thất, Quy hoạch chuyên nghiệp sáng tạo. —————————————— 🚀Khóa học 3DSMAX – PHOTOSHOP Offline tại đại học kiến trúc Hà Nội: 🔹 Link đăng ký học offline (Tại cơ sở ĐH kiến trúc HN) : 🔹 Thành quả học viên: 🔹 Giáo án: 🔹 Thông tin giảng viên(2019) : ——————————————- 🚀Nhận chỉnh sửa ảnh photoshop kiến trúc, nội thất, quy hoạch, dàn trang, portfolio, CV… 🚀Nhận tư vấn thiết kế kiến trúc. 🔹Hồ sơ năng lực: Liên hệ làm việc với mình qua email: [email protected] ——————————————- #photoshop #kientruc #kien_truc #photoshopkientruc #photoshop_kien_truc #photshop_mat_bang #mat_bang #mat_dung #phoi_canh #3dsmax_quy_hoach #photoshop_cơ_bản #vẽ_hình_trong_photoshop #vẽ_đường_thẳng_trong_photoshop #vẽ_hình_vuông_trong_photoshop #vẽ_hình_tròn_trong_photoshop #vẽ_hình_chữ_nhật_trong_photoshop #vẽ_khung_trong_photoshop #vẽ_hình_tam_giác_trong_photoshop #vẽ_đường_cong_trong_photoshop #bài_giảng_photoshop_cơ_bản #khóa_học_photoshop_cơ bản #học_photoshop_cs6 #hướng_dẫn sử_dụng_photoshop_cs6_chỉnh_sửa_ảnh #hướng_dẫn_photoshop #hướng_dẫn_photoshop_cơ_bản

Tag: vẽ hình tam giác trong photoshop, học photoshop cơ bản, vẽ hình trong photoshop, vẽ đường thẳng trong photoshop, vẽ hình vuông trong photoshop, vẽ hình tròn trong photoshop, vẽ hình chữ nhật trong photoshop, vẽ khung trong photoshop, vẽ hình tam giác trong photoshop, vẽ đường cong trong photoshop, bài giảng photoshop cơ bản, khóa học photoshop cơ bản, học photoshop cs6, hướng dẫn sử dụng photoshop cs6 chỉnh sửa ảnh, hướng dẫn photoshop, hướng dẫn photoshop cơ bản, học photoshop online, học photoshop cc 2019

Đánh giá bài vẽ

Lục Giác, Lục Giác Đều

Diện tích lục giác thường: Muốn tính diện tích của hình lục giác thường, ta có thể chia hình lục giác thành 4 hình tam giác, tính tổng diện tích của các tam giác đó là tìm ra diện tích của hình lục giác.

Công thức tính chu vi lục giác: P = 6.aVới: P là chu vi và a là cạnh của lục giác

II. Lục giác đều 1. Khái niệm

Nếu sáu cạnh có chiều dài bằng nhau, nó được gọi là một hình lục giác sáu cạnh đều. Chỉ khi tất cả các góc có cùng kích thước, và các cạnh bằng nhau, mới gọi là lục giác đều. Một hình khối với hai đáy hình lục giác gọi là lục lăng.

Các cạnh bằng nhau và các góc ở đỉnh bằng nhau.

Tâm của đường tròn ngoại (và nội) tiếp là tâm đối xứng quay (tỏa tròn).

Tổng số đo các góc ở đỉnh là: ((n.180^{circ} -360^{circ})=180^{circ}.(n-2)) ,mà n là số cạnh của đa giác đều. Vậy độ lớn của góc ở đỉnh là: (180^{circ}.dfrac{n-2}{n}) .

Gọi R và r là bán kính của đường tròn ngoại và nội tiếp của đa giác đều, gọi cạnh của đa giác đều là a , thì ta có:

(a=2.R.sin(dfrac{360^{circ}}{2}.n)=2.r.tan(dfrac{360^{circ}}{2}.n) )

Các cạnh của nó dài đúng bằng bán kính đường tròn ngoại tiếp.

Nếu nối tâm đường tròn ngoại (và nội) tiếp với các đỉnh của lục giác thì ta sẽ có 6 tam giác đều.

3. Cách vẽ lục giác đều

Có nhiều cách vẽ hình lục giác đều mà bạn có thể tham khảo sau đây:

Cách 1: Ta vẽ đường tròn, trong hình tròn vẽ đường kính lấy 2 điểm của đường kính nằm trên đường tròn vẽ 2 cung có bán kính bằng bán kính hình tròn lúc đầu các điểm giao nhau của các hình tròn và hai đầu của đường kính là 6 điểm của hình lục giác đều.

Cách 2: Bạn có thể vẽ lục giác đều với độ dài cạnh cho trước như sau: Lấy số đo độ dài của cạnh lục giác đều làm bán kính để vẽ 1 đường tròn sau đó đặt liên tiếp các dây cung dài bằng bán kính đó lên đường tròn vừa vẽ được (Đặt được 6 dây cung bằng nhau liên tiếp), các mút chung của 2 dây liên tiếp lần lượt chính là các đỉnh của lục giác đều có độ dài cạnh cho trước.

Cách 3: Bạn hãy vẽ ra 1 tam giác đều rồi sau đó vẽ cho nó 1 đường tròn ngoại tiếp từ 1 đỉnh của tam giác kéo dài qua tâm đường tròn cắt đường tròn tại 1 điểm nữa (điểm A). Từ điểm A này vẽ 1 tam giác đều có đường cao là đường kéo dài qua tâm hồi nãy.

Cách 4: Bạn vẽ 1 đường tròn (C) bán kính bất kì, đặt tâm compa nằm trên đường tròn (C), quay các dg tròn đồng tâm với (C) cắt (C) tại các điểm là đỉnh lục giác cần tìm. Tâm của đường tròn sau là giao điểm của đường tròn trước với (C).

Tìm hiểu thêm: Bảng công thức logarit đầy đủ từ A đến Z để giải bài tập

4. Diện tích lục giác đều

Để tính được diện tích của hình lục giác đều, ta sử dụng công thức như sau:

(S = dfrac{3sqrt3 a^2}{ 2})

Trong đó:

S là kí hiệu diện tích

a là độ dài cạnh của lục giác

Mới nhất: Công thức tính diện tích hình lục giác

III. Bài tập luyện tập về lục giác

Bài 1: Cho lục giác lồi ABCDEF biết rằng mỗi đường chéo AD,BE,CF chia nó thành 2 phần có diện tích bằng nhau.Gọi M,N lần lượt là giao của EB với AC và FD, P và Q lần lượt là giao của AD với BF và CE.CMR:

a) PM song song với NQ.

b) AD,BE,CF đồng quy.

Bài 2: CMR nếu ngũ giác có các góc bằng nhau và nội tiếp 1 đường tròn thì ngũ giác ấy đều.

Bài 3: Các cạnh đối diện AB và DE,BC và EF,CD và FA của lục giác ABCDEF song chúng tôi diện tích tam giác ACE=diện tích tam giác BDF.

Bài 4: Cho lục giác ABCDEF có các cạnh đối song song.

a) CMR diện tích tam giác ACE lớn hơn hoặc bằng 1 nửa diện tích ABCDEF.

b) CMR nếu lúc giác có các góc bằng nhau thì hiệu các cạnh đối diện bằng nhau.

Bài 5: Cho ngũ giác lồi ABCDE có tam giác ABC và CED đều.Gọi O là tâm của tam giác ABC.M và N lần lượt là trung điểm của BD và chúng tôi tam giác OME và tam giác OND đồng dạng.

Bài tập về lục giác đều có lời giải: IV. Ứng dụng hình lục giác trong cuộc sống 1. Các lỗ tổ ong mật có hình lục giác đều

Như các bạn đã biết, loài ong được coi là những kiến trúc sư đại tài trong thế giới loài vật. Khi quan sát tổ ong, bạn sẽ nhận thấy các lỗ trên tổ đều là những hình lục giác đều có sáu góc, sáu cạnh bằng nhau nằm sát kề nhau, sở dĩ con ong lựa chọn cách xây tổ như vậy vì chu vi lục giác nhỏ nhất trong số các hình tam giác hay hình vuông; hơn nữa cấu trúc lỗ tổ hình lục giác có sức chứa tối đa và có độ bền lớn so với các loại hình học khác. Lục giác đều là một hình mà khi con ong xây tổ thì nó sẽ lấy hình này làm “tế bào” và nhờ đó nó sẽ cần dùng ít nguyên vật liệu xây dựng nhất, để đạt được “không gian sống” cho các ong con hiệu quả nhất.

2. Nước Pháp là “đất nước hình lục giác”

Chắc hẳn khi nhắc đến nước Pháp (Cộng hòa Pháp), bạn sẽ nghĩ ngay đến tháp Ép-phen, một kiệt tác nổi tiếng và những cánh đồng hoa oải hương tím ngắt,… nhưng bạn cũng sẽ rất bất ngờ khi biết phạm vi lãnh thổ nước Pháp trên bản đồ có hình lục giác sáu cạnh rất thú vị. Bởi vậy mà nước Pháp còn được gọi là “đất nước hình lục lăng”.

3. Hình lục giác là hình khối phổ biến trong xây dựng lăng mộ

Chắc hẳn đã có đôi lần bạn nhìn thấy những ngôi mộ bằng đá được xây dựng theo hình lục giác đều, bạn có cảm thấy tò mò về nó không, vậy tại sao khối hình này lại được chọn lựa để xây dựng lăng mộ? Lí do đó chính là khối lục giác được chọn là bởi khối hình này có ý nghĩa rất lớn trong tự nhiên, nó biểu tượng cho sự hoàn hảo và đẹp đẽ của tự nhiên. Hơn thế nữa, cách xây dựng theo hình lục giác sẽ giúp tiết kiệm được vật liệu mà công trình vẫn có thể giữ được độ bền chắc, bên cạnh đó vẫn giữ được ý nghĩa về phong thủy.

Cho Lục Giác Đều Abcdef Có Tâm O Như Hình Vẽ.

Chủ đề :

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

CÂU HỎI KHÁC

Khi gọi điện thoại một khách hàng đã quên mất 2 chữ số cuối mà chỉ nhớ rằng đó là 2 chữ số khác nhau nên đành

Một đoàn tàu có 10 toa, 7 người vào ngẫu nhiên các toa.

Cho hình chóp chúng tôi có đáy ABCD là hình bình hành. Gọi I, J lần lượt là trung điểm của AB và CD.

Cho hình chóp chúng tôi có đáy ABCD là hình bình hành tâm O.Gọi M, N lần lượt là trung điểm của SA và SD.

Cho tập (X = left{ {0,1,2,3,4,5,6,7,8,9} right}.

Có 2 hộp, hộp 1 đựng 8 bi trắng và 2 bi đen; hộp 2 đựng 9 bi trắng và 1 bi đen.

Cho hình chóp S.ABCD, đáy là hình bình hành tâm O, gọi M, N, P, Q lần lượt là trung điểm SA, SB SC và SD.

Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AC và BC. Trên đoạn BD lấy P sao cho PB = 2PD.

Giá trị lớn nhất và giá trị nhỏ nhất của hàm số (y = sqrt 2 sin (x – frac{pi }{4}) + 1) theo thứ tự là:

Tìm giá trị của biểu (J = C_{20}^0 – {2^2}C_{20}^1 + {2^4}C_{20}^2 – {2^6}C_{20}^3 + … + {2^{40}}C_{20}^{20}.)

Khi thực hiện liên tiếp phép vị tự và phép tịnh tiến ta được phép biến hình nào sau đây:

Phép quay tâm (O(0;0)) góc quay (90^0) biến điểm (Aleft( {2;7} right)) thành điểm nào sau đây?

Trong mặt phẳng Oxy, cho đường thẳng (d:x + 3y – 4 = 0).

Cho 10 người ngồi thành 1 vòng tròn có 10 chỗ ngồi đã đánh số.

Cho tập (X = left{ {1,2,3,4,5,6} right}.

Cho biết tổng của 3 hệ số: hệ số thứ nhất, thứ hai, thứ ba trong khai triển ({left( {{x^3} + frac{1}{{{x^2}}}} right)^n})

Cho hình chữ nhật ABCD tâm O, gọi M, N, P, Q lần lượt là trung điểm AB, BC, CD, DA.

Một hộp đựng 15 quả bóng bàn trong đó có 9 quả còn mới.

Cho đa thức (Pleft( x right) = left( {1 + x} right) + 2{left( {1 + x} right)^2} + 3{left( {1 + x} right)^3} + …

Phép biến hình nào sau đây không có tính chất : Biến một đường thẳng thành đường thẳng song song hoặc trùng nó”

Hàm số nào sau đây không là hàm số chẵn, không là hàm số lẻ:

Với giá trị nào của hằng số A và của hằng số (alpha ) thì hàm số (y = Asin (x + alpha )) là 1 hàm số lẻ.

Có 5 tem thư và 6 phong bì khác nhau. Chọn ra 3 bì thư và 3 tem thư và dán 3 tem thư lên 3 phong bì. Hỏi có bao nhiêu cách?

Cho hình bình hành ABCD tâm O, ({V_{(O, – 1)}}) biến đường thẳng AB thành đường thẳng:

Cho đường tròn (left( C right):{left( {x – 1} right)^2} + {left( {y + 2} right)^2} = 4).

Cho hình chóp chúng tôi có đáy ABCD là hình bình hành tâm O, gọi I là trung điểm AB. Mặt phẳng nào song song với OI?

Tìm hạng tử độc lập với (x) trong khai triển ({left( {x + frac{1}{{{x^3}}}} right)^{16}}).

Cho hình chóp S.ABCD, đáy là hình bình hành tâm O, gọi M là trung điểm CD. Giao điểm của BM với mặt phẳng (SAD) là :

Tìm tập xác định của hàm số (y = {(1 + sqrt {sin x – cos x} )^2} + {(1 – sqrt {cos x – sin x} )^2})

Hàng trong kho có 20% phế phẩm. Lấy ngẫu nhiên 5 sản phẩm. Tính xác suất trong 5 sản phẩm này có ít nhất 1 phế phẩm.

Tìm các số hạng giữa của khai triển ({left( {{x^3} – xy} right)^{15}}.)

Cho đường tròn (left( C right):{left( {x – 1} right)^2} + {left( {y + 2} right)^2} = 9).

Tìm hệ số của ({x^{12}}{y^{13}}) trong khai triển ({left( {2x + 3y} right)^{25}})

Khai triển (Pleft( x right) = {left( {3 + x} right)^{50}} = {a_0} + {a_1}x + {a_2}{x^2} + … + {a_{50}}{x^{50}}.

Trong số 50 học sinh của lớp có 20 học sinh giỏi văn, 25 học sinh giỏi toán, 10 học sinh giỏi cả văn và toán.

Cho lục giác đều ABCDEF có tâm O như hình vẽ.

Rút ngẫu nhiên 8 quân bài từ một bộ bài tú lơ khơ 52 quân. Xác suất lấy được 5 quân đỏ là:

Cho (Delta ABC) có (A(1;2),,B( – 3;5),,C( – 1; – 1)).

Tổng giá trị lớn nhất và giá trị nhỏ nhất hàm số (y = sin 2{rm{x}}) với (x in left[ { – frac{pi }{6};frac{pi }{3

Số hạng không chứa x trong khai triển ({left( {x – frac{2}{x}} right)^8}) là:

Hướng Dẫn Vẽ Hình Khối Cơ Bản: Vuông, Lục Giác, Trụ, Cầu

( 10-05-2016 – 08:34 AM ) – Lượt xem: 312887

1. HƯỚNG DẪN VẼ KHỐI LẬP PHƯƠNG

Một trong những bước đầu làm quen với bộ môn HÌNH HỌA, không thể không nói tới khối lập phương, một trong bốn khối căn bản không thể bỏ qua trong suốt quá trình rèn luyện kĩ năng căn bản trong giai đoạn một, giai đoạn vẽ khối kỷ hà.

Trong không gian hai chiều, khối lập phương còn được gọi là hình vuông. Trong không gian ba chiều, ngoài chiều ngang và chiều cao, khối lập phương còn có chiều sâu. Sở dĩ chúng tôi chọn khối lập phương là khối kỷ hà đầu tiên để cho những bạn đang trong quá trình rèn luyện kĩ năng căn bản làm quen, là bởi vì khối này đáp ứng được RÕ RÀNG & ĐẦY ĐỦ các tiêu chí sau:

* Khối góc cạnh, dễ nhìn ra giới hạn chiều dài của các cạnh, các mảng của chiều cao, chiều ngang.

* Khối có thể nhìn rõ được chiều sâu của các mặt phía trước & phía sau.

* Khối có thể thấy rõ ràng các mặt sáng – mờ – tối – bóng đổ – phản quang.

* Khối không quá khó để dựng hình, không có các chi tiết phức tạp cũng như phải vận dụng nhiều quy luật vẽ để thể hiện.

* Khối lập phương là tiền đề của rất nhiều khối căn bản & các khối phức tạp sau này. Khi đã tìm hiểu kĩ khối lập phương, thì bạn đã có thể hình dung tối thiểu bất kì vật thể nào trong không gian sau này theo tính chất của khối lập phương để có thể diễn tả được chúng một cách dễ dàng & hiệu quả nhất.

Dựa vào các tiêu chí trên, chúng tôi xin được trình bày các bước dựng hình và lên sáng tối cơ bản của khối lập phương như sau:

– Canh bố cục nằm giữa giấy vẽ. Sử dụng que đo để đo tỉ lệ chiều cao tổng & chiều ngang tổng, so sánh chúng với nhau (ưu tiên lấy tỉ lệ nhỏ hơn làm chuẩn), rồi chấm ra bốn điểm tượng trưng cho chiều ngang tổng, chiều cao tổng của khối trên giấy. Kiểm tra lại thêm một lần nữa, nếu không có gì thay đổi ta phác nét ra.

– Quan sát diện bên trái & bên phải, diện nào nhỏ hơn (ưu tiên lấy tỉ lệ nhỏ hơn làm chuẩn), so sánh chúng với nhau để phác ra tiếp cạnh giữa.

– Khi đã có điểm cao nhất, điểm thấp nhất, cạnh trái, cạnh phải, cạnh giữa của khối lập phương, ta dễ dàng tìm được tỉ lệ chiều sâu của diện đỉnh bằng cách đo chiều sâu của diện đỉnh so sánh với bất kì diện trái hay phải của khối (ưu tiên so sánh diện đỉnh với diện nào nhỏ hơn).

– Lúc đã có được những tỉ lệ cần thiết nhất, ta vẽ cấu trúc khối lập phương ra rõ ràng để xác định mặt đáy, từ mặt đáy ta có thể phác ra bóng đổ của khối.

– Kẻ đường cạnh bàn nhằm phân chia rõ mặt phẳng nền đứng & nền nằm nhằm tạo điều kiện cho việc vẽ nền sau này.

– Để ý chì luôn chuốt nhọn vừa phải thường xuyên, đan nét theo chiều của vật thể để tạo khối khỏe và mạnh hơn.

– Có thể vẽ nền ngay từ đầu trước khi vẽ khối hoặc vẽ khối xong vẽ nền vào sau cũng được. Chú ý đánh nét đậm từ trong góc đánh ra.

– Bắt đầu tăng đậm các diện sáng tối. Lưu ý câu “gần rõ – xa mờ” để tăng đậm các diện sao cho đúng quy luật viễn cận.

– Hoàn thiện khối. Ở bước này lưu ý phản quang của mặt tối không nên quá sáng mà chỉ chuyển độ nhè nhẹ. Độ đậm của nền & bóng đổ phải rõ ràng đồng thời tách hẳn ra khỏi mặt tối càng tốt.

– Để đảm bảo sắc độ được tăng giảm – điều chỉnh đúng cách, nên tập thói quen để bài ra xa, đặt bài vẽ dưới mẫu nhằm so sánh trực tiếp, như vậy ta sẽ dễ nhìn ra lỗi sai của mình hơn để chỉnh sửa kịp thời.

– Sắc độ của mặt nền nằm không nên để quá sáng mà phải hơi trầm xuống, nhằm tách mặt nền ra khỏi mặt sáng của mẫu.

2. HƯỚNG DẪN VẼ KHỐI LỤC GIÁC

Khối lục giác là bài tập tiếp theo của khối lập phương, với tính chất & tỉ lệ hơi khác một chút, nhưng khối lục giác và khối lập phương khi kết hợp với nhau sẽ tạo thành tiền đề của bất kì vật thể nào sau này trong không gian. Lưu ý là các vật thể trong không gian lại có rất nhiều hình dạng phức tạp, nếu không vững kiến thức căn bản để khái quát chúng về dạng khối cơ bản, các em sẽ dễ dàng rơi vào trạng thái chán nản vì vẽ hoài không ra được khối giống như mẫu, khối méo mó, không hiểu cấu trúc để đi sâu được.

– Canh bố cục nằm giữa giấy vẽ. Sử dụng que đo để đo tỉ lệ chiều cao tổng & chiều ngang tổng, so sánh chúng với nhau (ưu tiên lấy tỉ lệ nhỏ hơn làm chuẩn), rồi chấm ra bốn điểm tượng trưng cho chiều ngang tổng, chiều cao tổng của khối trên giấy. Kiểm tra lại thêm một lần nữa, nếu không có gì thay đổi ta phác nét ra.

– Quan sát diện bên trái & bên phải & diện giữa, diện nào nhỏ hơn (ưu tiên lấy tỉ lệ nhỏ hơn làm chuẩn), so sánh chúng với nhau để phác ra tiếp hai cạnh ở giữa ngăn rõ chu vi của ba diện.

– Khi đã có điểm cao nhất, điểm thấp nhất, cạnh trái, cạnh phải, hai cạnh giữa của khối lục giác, ta dễ dàng tìm được tỉ lệ chiều sâu của diện đỉnh bằng cách đo chiều sâu của diện đỉnh so sánh với bất kì diện trái hay phải của khối (ưu tiên so sánh diện đỉnh với diện nào nhỏ hơn).

– Lúc đã có được những tỉ lệ cần thiết nhất, ta vẽ cấu trúc khối lục giác ra rõ ràng để xác định mặt đáy, từ mặt đáy ta có thể phác ra bóng đổ của khối.

– Kẻ đường cạnh bàn nhằm phân chia rõ mặt phẳng nền đứng & nền nằm nhằm tạo điều kiện cho việc vẽ nền sau này.

– Để ý chì luôn chuốt nhọn vừa phải thường xuyên, đan nét theo chiều của vật thể để tạo khối khỏe và mạnh hơn.

– Có thể vẽ nền ngay từ đầu trước khi vẽ khối hoặc vẽ khối xong vẽ nền vào sau cũng được. Chú ý đánh nét đậm từ trong góc đánh ra.

– Bắt đầu tăng đậm các diện sáng tối. Lưu ý câu “gần rõ – xa mờ” để tăng đậm các diện sao cho đúng quy luật viễn cận.

– Hoàn thiện khối. Ở bước này lưu ý phản quang của mặt tối không nên quá sáng mà chỉ chuyển độ nhè nhẹ. Độ đậm của nền & bóng đổ phải rõ ràng đồng thời tách hẳn ra khỏi mặt tối càng tốt.

– Để đảm bảo sắc độ được tăng giảm – điều chỉnh đúng cách, nên tập thói quen để bài ra xa, đặt bài vẽ dưới mẫu nhằm so sánh trực tiếp, như vậy ta sẽ dễ nhìn ra lỗi sai của mình hơn để chỉnh sửa kịp thời.

– Sắc độ của mặt nền nằm không nên để quá sáng mà phải hơi trầm xuống, nhằm tách mặt nền ra khỏi mặt sáng của mẫu.

3. HƯỚNG DẪN VẼ KHỐI TRỤ

– Cách dựng hình khối trụ giống hệt khối lục giác, đầu tiên ta quan sát mẫu xem tỉ lệ của chiều nào nhỏ hơn chiều nào, ta ưu tiên lấy tỉ lệ nhỏ hơn làm chuẩn, sau đó so sánh qua tỉ lệ còn lại, từ đấy chấm ra 4 điểm dựa trên tỉ lệ mà ta vừa so sánh, phác ra khung hình chữ nhật thể hiện kích thước của khối trụ.

– Do đang vẽ vật mẫu có tính chất đối xứng nên ta phải lưu ý vẽ trục dọc của khối trụ vào, trục dọc là trục thẳng đứng, vuông góc với mặt đất & chia khối trụ ra làm hai phần bằng nhau.

– Sau đó ta lấy chiều sâu của mặt đỉnh so sánh với chiều ngang của khối trụ, phác ra chiều sâu của mặt đỉnh. Từ mặt đỉnh ta vẽ ra mặt đáy có kích thước lớn hơn mặt đỉnh một chút.

– Có được các tỉ lệ cần thiết, ta phác ra cấu trúc khối trụ, vẽ mặt đỉnh & mặt đáy vào, từ đấy xác định được bóng đổ của khối

– Phác đường cạnh bàn để phân chia không gian đứng & không gian nằm nhằm mục đích vẽ nền sau này.

– Ta phân diện cho khối trụ giống như khối lục giác, nheo mắt lại để phác ra chu vi của các diện sáng – mờ – tối theo vật mẫu.

– Để ý chì luôn chuốt nhọn vừa phải thường xuyên, đan nét theo chiều của vật thể để tạo khối khỏe và mạnh hơn.

– Có thể vẽ nền ngay từ đầu trước khi vẽ khối hoặc vẽ khối xong vẽ nền vào sau cũng được. Chú ý đánh nét đậm từ trong góc đánh ra.

– Bắt đầu tăng đậm sắc độ các diện sáng tối.

– Ở bước này để tạo độ cong cho khối khỏe hơn, nên phân tích & đưa khối về dạng vạt mảng, tức là khối lục giác, để đan nét cho đúng chiều của diện.

– Khi khối cong đã bắt đầu xuất hiện, tuy nhiên nếu vẫn còn hơi cứng, ta chuốt chì nhọn vừa phải, vờn nhẹ vùng đỉnh khối để giảm bớt độ gắt từ đỉnh khối chuyển dần qua diện mờ.

– Sử dụng chì nhạt B để vờn khối tương tự từ diện mờ qua diện sáng.

– Hoàn thiện khối. Ở bước này lưu ý phản quang của mặt tối không nên quá sáng mà chỉ chuyển độ nhè nhẹ. Độ đậm của nền & bóng đổ phải rõ ràng đồng thời tách hẳn ra khỏi mặt tối càng tốt.

4. HƯỚNG DẪN VẼ KHỐI CẦU

– Đầu tiên ta canh bố cục trong tờ giấy vẽ cho cân đối, sau đó dựng khung hình vuông ra, trong đó khối cầu nằm vừa vặn trong khung hình ấy. Từ đấy ta dựng trục dọc & trục ngang chia khung hình thành bốn phần bằng nhau.

– Từ khung hình vuông & trục dọc, trục ngang được xác định đầy đủ, ta vẽ đường cong dựa vào cạnh ngoài của từng ô vuông nhỏ.

– Sau khi dựng hình xong hình tròn, ta xác định mặt elip với tâm là giao điểm của trục dọc & trục ngang để tạo độ sâu, hình thành nên khối cầu.

– Lúc dựng hình được khối cầu hoàn chỉnh, tiếp tục ta xác định đường cạnh bàn chia không gian ra làm hai phần bao gồm không gian đứng & không gian nằm.

– Để ý chì luôn chuốt nhọn vừa phải thường xuyên, đan nét theo chiều của vật thể để tạo khối khỏe và mạnh hơn.

– Có thể vẽ nền ngay từ đầu trước khi vẽ khối hoặc vẽ khối xong vẽ nền vào sau cũng được. Chú ý đánh nét đậm từ trong góc đánh ra.

– Bắt đầu tăng đậm các diện sáng tối. Lưu ý câu “gần rõ – xa mờ” để tăng đậm các diện sao cho đúng quy luật viễn cận.

– Hoàn thiện khối. Ở bước này lưu ý phản quang của mặt tối không nên quá sáng mà chỉ chuyển độ nhè nhẹ. Độ đậm của nền & bóng đổ phải rõ ràng đồng thời tách hẳn ra khỏi mặt tối càng tốt. Độ đậm của đỉnh khối qua mặt mờ & từ mặt mờ đến mặt sáng nên chuyển độ càng êm càng tốt, vẫn luôn phải thường xuyên đánh bóng theo chiều của khối nhằm đảm bảo vẫn giữa được độ cong của vật thể.

– Để đảm bảo sắc độ được tăng giảm – điều chỉnh đúng cách, nên tập thói quen để bài ra xa, đặt bài vẽ dưới mẫu nhằm so sánh trực tiếp, như vậy ta sẽ dễ nhìn ra lỗi sai của mình hơn để chỉnh sửa kịp thời.

– Sắc độ của mặt nền nằm không nên để quá sáng mà phải hơi trầm xuống, nhằm tách mặt nền ra khỏi mặt sáng của mẫu.