Top 5 # Xem Nhiều Nhất Cách Vẽ Đồ Thị Hàm Số Bậc 3 Trong Excel Mới Nhất 3/2023 # Top Like | Techcombanktower.com

Cách Vẽ Đồ Thị Hàm Số Bậc 3

Khảo sát và vẽ đồ thị hàm số bậc 3 là dạng toán quen thuộc ở chương khảo sát hàm số lớp 12. Để vẽ được học sinh phải làm theo tuần tự các bước. Bài viết hôm nay sẽ hướng dẫn chi tiết từng bước 1, một điểm đặc biệt là sau phần phương pháp sẽ có nhiều ví dụ kèm lời giải giúp người xem hiểu hơn.

Bài viết này gồm 2 phần

1. Khảo sát và vẽ đồ thị hàm số bậc 3: y = ax3 + bx2 + cx + d 

Để vẽ được đồ thị hàm số bậc 3 bạn cần tuân thủ theo 3 bước sau đây:

Bước 1: Tập xác định là R

Bước 2: Khảo sát sự biên thiên của hàm số

Tính đạo hàm bậc nhất

Chỉ ra cực trị của hàm số

Tìm các giới hạn vô cực

Xét dấu đạo hàm và vẽ bảng biến thiên

Bước 3: Vẽ đồ thị

2. Bài tập

Ví dụ 1: Hãy vẽ đồ thị hàm số y = x3 – 3×2 – 4x – 4

Lời giải

Tập xác định: D = R

Lấy đạo hàm y’ = 3×2 – 6x – 4

Giới hạn: $mathop {lim }limits_{x to + infty } y = + infty ;,mathop {lim }limits_{x to – infty } y = – infty $

Bảng biến thiên:

Từ bảng biến thiên trên ta có đồ thị hàm số

Ví dụ 2: Vẽ đồ thị hàm số bậc 3 có dạng y = x3 – 2×2

Lời giải

Tập xác định: D = R

Lấy đạo hàm: y’ = 3×2 – 4x

Giới hạn: $mathop {lim }limits_{x to + infty } left( {{x^3} – 2{x^2}} right) = + infty ;,mathop {lim }limits_{x to – infty } left( {{x^3} – 2{x^2}} right) = – infty $

Bảng biến thiên

Từ bảng biến thiên ta có đồ thị

Ví dụ 3: Vẽ đồ thị hàm số có dạng y = 5×3

Lời giải

Tập xác định là D = R

Lấy đạo hàm: y’ = 15×2

Giới hạn: $mathop {lim }limits_{x to + infty } left( {5{x^3}} right) = + infty ;,mathop {lim }limits_{x to – infty } left( {5{x^3}} right) = – infty $

Bảng biến thiên

Từ bảng biến thiên ta có đồ thị như sau

Ví dụ 4: Vẽ đồ thị hàm số có dạng $y = – frac{{{x^3}}}{3} + frac{1}{4}x$

Lời giải

Tập xác định: D = R

Lấy đạo hàm: y’ = $ – {x^2} + frac{1}{4}$

x = $frac{1}{2}$ thì $y = – frac{1}{{12}}$

x = – $frac{1}{2}$ thì $y = frac{1}{{12}}$

Giới hạn: $mathop {lim }limits_{x to + infty } left( { – frac{{{x^3}}}{3} + frac{1}{4}x} right) = – infty ;,mathop {lim }limits_{x to – infty } left( { – frac{{{x^3}}}{3} + frac{1}{4}x} right) = + infty $

Khi đó ta có bảng biến thiên:

Từ bảng biến thiên ta có đồ thị hàm số như sau

Cách Nhận Dạng Đồ Thị Hàm Số Bậc 3 Cực Hay

Cách nhận dạng đồ thị hàm số bậc 3 cực hay

A. Phương pháp giải & Ví dụ

Các dạng đồ thị của hàm số bậc 3 y = ax 3 + bx 2 + cx + d (a ≠ 0)

Đồ thị hàm số có 2 điểm cực trị nằm 2 phía so với trục Oy khi ac < 0

Đồ thị hàm số bậc ba luôn nhận điểm uốn làm tâm đối xứng

Ví dụ minh họa

Mặt khác hàm số không có cực trị nên loại A.

Chọn C.

Ví dụ 2: Cho hàm số bậc 3 có dạng: y = f(x) = ax 3 + bx 2 + cx + d.

Hãy chọn đáp án đúng?

B. Đồ thị (II) xảy ra khi a ≠ 0 và f'(x) = 0 có hai nghiệm phân biệt.

C. Đồ thị (I) xảy ra khi a < 0 và f'(x) = 0 có hai nghiệm phân biệt.

Hướng dẫn

Hàm số của đồ thị (II) có a < 0 nên điều kiện a ≠ 0 chưa đảm bảo. Do đó loại phương án B.

Hàm số của đồ thị (IV) có a < 0 nên loại luôn phương án A.

Chọn D.

Ví dụ 3: Cho hàm số y = ax 3 + bx 2 + cx + d có đồ thị như hình vẽ bên.

Ta có: y’ = 3ax 2 + 2bx + c

Vì hàm số đạt cực tiểu tại điểm x = 0 nên y'(0) = 0 ⇒ c = 0 loại đáp án A.

Khi đó: y’ = 0 ⇔ 3ax 2 + 2bx = 0 ⇔ x = 0 hoặc x = -2b/3a

Chọn D.

B. Bài tập vận dụng

Bài 2:

Bài 3:

Bài 4:

Bài 5:

Bài 6:

Bài 7:

Bài 8:

Bài 9:

Bài 10:

Bài 11:

Bài 12:

Bài 13:

Bài 14:

Bài 15: Cho hàm số y = x 3 + ax + b có đồ thị như hình bên. Chọn khẳng định đúng:

A. a < 0,b < 0

Bài 16: Cho hàm số y = 1/3x 3 + bx 2 + cx + d có đồ thị như hình bên. Chọn khẳng định đúng:

D. b < 0,c < 0,d < 0

Bài 17: Cho hàm số y = ax 3 + bx 2 + cx + d có đồ thị như hình bên. Chọn khẳng định đúng:

Ngân hàng trắc nghiệm miễn phí ôn thi THPT Quốc Gia tại chúng tôi

nhan-dang-do-thi-ham-so.jsp

Khảo Sát Và Vẽ Đồ Thị Hàm Số Bậc 4

Các bước khảo sát và vẽ đồ thị hàm số bậc 4 trùng phương

Cách khảo sát sự biến thiên và vẽ đồ thị hàm số bậc 4 trùng phương

I- SƠ ĐỒ CHUNG KHẢO SÁT VÀ VẼ ĐỒ THỊ HÀM SỐ BẬC 4 trùng phương

1. Tập xác định của hàm số

2. Sự biến thiên của hàm số

2.1 Xét chiều biến thiên của hàm số

+ Tính đạo hàm y’

+ Tìm các điểm mà tại đó đạo hàm y’ bằng 0 hoặc không xác định

+ Xét dấu đạo hàm y’ và suy ra chiều biến thiên của hàm số.

2.2 Tìm cực trị của hàm số bậc 4 trùng phương 2.3 Tìm các giới hạn tại vô cực (x→±∞x→±∞ ), các giới hạn có kết quả là vô cực và tìm tiệm cận nếu có. 2.4 Lập bảng biến thiên.

Thể hiện đầy đủ và chính xác các giá trị trên bảng biến thiên.

– Tìm Các điểm CĐ; CT nếu có.

( nếu nghiệm bấm máy tính được thì bấm, nghiệm lẻ giải tay được thì phải giải ra- chẳng hạn phương trình bậc 2, còn nghiệm lẽ mà không giải được thì ghi ra giấy nháp cho biết giá trị để khi vẽ cho chính xác- không ghi trong bài- chẳng hạn hàm bậc 3)

– Lấy thêm một số điểm (nếu cần)- ( điều này làm sau khi hình dung hình dạng của đồ thị. Thiếu bên nào học sinh lấy điểm phía bên đó, không lấy tùy tiện mất thời gian.)

– Nhận xét về đặc trưng của đồ thị. Điều này sẽ cụ thể hơn khi đi vẽ từng đồ thị hàm số.

II- SƠ ĐỒ KHẢO SÁT VÀ VẼ ĐỒ THỊ HÀM BẬC 4 TRÙNG PHƯƠNG: y = ax4 + bx2 + c (a ≠ 0)

2. Sự biến thiên của hàm số bậc 4 trùng phương

2.1 Xét chiều biến thiên của hàm số bậc 4 trùng phương

+ Tính đạo hàm:

+ ( Bấm máy tính nếu nghiệm chẵn, giải nếu nghiệm lẻ- không được ghi nghiệm gần đúng)

+ Xét dấu đạo hàm y’ và suy ra chiều biến thiên của hàm số.

2.2 Tìm cực trị 2.3 Tìm các giới hạn tại vô cực (x→±∞x→±∞) Hàm bậc ba và các hàm đa thức không có TCĐ và TCN.)

2.4 Lập bảng biến Kết luận sau bảng biến thiên gồm: Tìm khoảng biến thiên, kết luận về cực đại và cực tiểu của hàm só

Thể hiện đầy đủ và chính xác các giá trị trên bảng biến thiên.

– Các điểm CĐ; CT nếu có.

( nếu nghiệm bấm máy tính được 3 nghiệm thì ta bấm máy tính, còn nếu được 1 nghiệm nguyên thì phải đưa về tích của một hàm bậc nhất và một hàm bậc hai để giải nghiệm. Trường hợp cả ba nghiệm đều lẻ thì chỉ ghi ra ở giấy nháp để phục vụ cho việc vẽ đồ thị)

– Lấy thêm một số điểm (nếu cần)- ( điều này làm sau khi hình dung hình dạng của đồ thị. Thiếu bên nào học sinh lấy điểm phía bên đó, không lấy tùy tiện mất thời gian.)

– Nhận xét về đặc trưng của đồ thị. Hàm bậc 4 trùng phương nhận trục tung làm trục đối xứng.

Các dạng đồ thị hàm số bậc 4 trùng phương: y = ax4 + bx2 + c

Ứng Dụng Đồ Thị Hàm Số Bậc 3 Vào Giải Toán

I. Đồ thị hàm số bậc 3 – Lý thuyết cơ bản

1. Các bước khảo sát hàm số bất kì.

Xét hàm y=f(x), để khảo sát hàm số, ta thực hiện theo các bước như sau:

Tìm tập xác định.

Xét sự biến thiên:

Tìm đạo hàm y’

Tìm ra các điểm làm y’=0 hoặc y’ không xác định.

Xét dấu y’, từ đó kết luận chiều biến thiên.

Xác định cực trị, tìm giới hạn, vẽ bảng biến thiên.

Vẽ đồ thị hàm số.

2. Khảo sát hàm số bậc 3.

Cho hàm số bậc 3 dạng:

Tập xác định: D=R

Sự biến thiên

Tính đạo hàm:

Giải phương trình y’=0.

Xét dấu y’, từ đó suy ra chiều biến thiên.

Tìm giới hạn. Chú ý: hàm bậc ba nói riêng và các hàm đa thức nói chung không có tiệm cận ngang và tiệm cận đứng. Sau đó vẽ bảng biến thiên.

Vẽ đồ thị: ta tìm các điểm đặc biệt thuộc đồ thị, thường là giao điểm của đồ thị với trục tung, trục hoành.

Khi nhận xét, chú ý rằng đồ thị hàm bậc 3 nhận 1 điểm làm tâm đối xứng (là nghiệm của phương trình y’’=0), gọi là điểm uốn của đồ thị hàm số bậc 3.

3. Dạng đồ thị hàm số bậc 3:

Cho hàm số bậc 3 dạng:

Đạo hàm

Ta xảy ra các trường hợp bên dưới:

Phương trình y’=0 tồn tại hai nghiệm phân biệt:

Phương trình y’=0 có nghiệm kép.

Phương trình y’=0 vô nghiệm.

II. Các bài toán ứng dụng đồ thị hàm số bậc 3.

Ví dụ 1:  Khảo sát đồ thị của hàm số bậc 3 sau: y=x3+3×2-4.

Hướng dẫn:

Bài này là một bài kinh điển, để khảo sát, lần lượt thực hiện theo các bước:

Tập xác định: D=R

Sự biến thiên:

Giải phương trình đạo hàm bằng 0:

Trong khoảng , y’<0 nên hàm số nghịch biến trên khoảng này.

Tìm giới hạn: 

Vẽ bảng biến thiên:

Hàm số đạt cực đại tại x=-2, giá trị cực đại yCD=0

Hàm số đạt cực tiểu tại x=0, giá trị cực tiểu yCT=-4

Vẽ đồ thị:

Xác định điểm đặc biệt: 

Giao điểm của đồ thị với trục hoành là nghiệm của phương trình hoành độ giao điểm y=0, hay

Vậy giao điểm với trục hoành là (-2;0) và (1;0)

Giao điểm với trục tung: ta thế x=0 vào hàm số y, được y=-4. 

Vậy giao điểm với trục tung là (0;-4).

Điểm uốn: Vậy điểm uốn của đồ thị là (-1;-2)Ta thu được đồ thị sau:

Nhận xét: cách trình bày trên phù hợp với các bài toán tự luận, ngoài ra đồ thị hàm số bậc 3 còn được sử dụng rộng rãi trong các bài toán trắc nghiệm mà ở đó, đòi hỏi những kỹ năng nhận dạng một cách nhanh chóng, chính xác để tìm ra đáp án bài toán.

y=x3-3x+1

y=-x3+3×2+1

y=-x3+x2+3

y=x3-3×2+3x+1

Hướng dẫn:

Hàm số này không có cực trị, nên loại đáp án A.

Vậy đáp án D đúng.

Nhận xét: bài toán này, các bạn có thể lý luận theo một cách khác, để ý hàm số đi qua điểm (0;1), vậy loại đáp án C. Mặt khác, đồ thị đi qua (1;2) nên loại A, B. Vậy suy ra đáp án D đúng.

Ví dụ 3: Cho hàm số bậc 3: có đồ thị:

Tìm đáp án chính xác:

Hướng dẫn:

Từ hình vẽ đồ thị, dễ dàng nhận thấy a<0.

Lại có: :

Hàm số đạt cực tiểu tại x=0, nên y’(0)=0, suy ra c=0. Loại đáp án A.

Vậy đáp án đúng là D.

Ví dụ 4: Cho hàm số . Xét 4 đồ thị sau:

Hãy lựa chọn mệnh đề chính xác:

Khi a khác 0 và f’(x)=0 tồn tại hai nghiệm phân biệt thì đồ thị (II) xảy ra.

Đồ thị (I) khi a<0 và f’(x)=0 tồn tại hai nghiệm phân biệt.

Hướng dẫn:

Đồ thị (II) khi a<0, vậy loại B vì điều kiện a ở mệnh đề này không đủ chặt chẽ.

Đồ thị (IV) xảy ra khi a<0, vậy loại A.

Kết hợp sự phân tích trên, D là đáp án chính xác.