Top 21 # Xem Nhiều Nhất Cách Giải Hệ Phương Trình Đặt Ẩn Phụ / 2023 Mới Nhất 12/2022 # Top Like | Techcombanktower.com

Cách Giải Hệ Phương Trình Bằng Phương Pháp Đặt Ẩn Phụ / 2023

Chuyên đề Toán lớp 9 luyện thi vào lớp 10

Chuyên đề thi vào 10: Giải hệ phương trình bằng cách đặt ẩn phụ

Giải hệ phương trình bằng cách đặt ẩn phụ là một dạng toán thường gặp trong đề thi tuyển sinh vào lớp 10 môn Toán được VnDoc biên soạn và giới thiệu tới các bạn học sinh cùng quý thầy cô tham khảo. Nội dung tài liệu sẽ giúp các bạn học sinh học tốt môn Toán lớp 9 hiệu quả hơn. Mời các bạn tham khảo.

I. Cách giải hệ phương trình bằng phương pháp đặt ẩn phụ

+ Bước 1: Đặt điều kiện để hệ phương trình có nghĩa

+ Bước 2: Đặt ẩn phụ thích hợp và đặt điều kiện cho ẩn phụ

+ Bước 3: Giải hệ theo các ẩn phụ đã đặt (sử dụng phương pháp thế hoặc phương pháp cộng đại số) sau đó kết hợp với điều kiện của ẩn phụ

+ Bước 4: Với mỗi giá trị ẩn phụ tìm được, tìm nghiệm tương ứng của hệ phương trình và kết hợp với điều kiện ban đầu

II. Bài tập ví dụ giải hệ phương trình bằng phương pháp đặt ẩn phụ

Lời giải:

a,

Đặt

Khi đó hệ (I) trở thành:

Với

Với

Vậy hệ phương trình đã cho có nghiệm

b,

Đặt

Khi đó hệ (I) trở thành:

Với

Với

Từ (1) và (2), ta có hệ phương trình:

Vậy hệ phương trình đã cho có nghiệm (x; y) = (2; 1)

c,

Đặt

Khi đó hệ (I) trở thành:

Với

Với

Từ (1) và (2) ta có hệ phương trình

Vậy hệ phương trình đã cho có nghiệm (x; y) = (3; 4)

d,

Đặt

Khi đó hệ (I) trở thành:

Với

Vậy hệ phương trình đã cho có nghiệm (x; y) = (2; 1) và (x; y) = (0; 1)

e,

Đặt

Hệ (I) trở thành:

Với

Với

Vậy hệ phương trình đã cho có nghiệm (x; y) = (1; 3)

f,

Đặt

Hệ (I) trở thành:

Với

Với

Vậy hệ phương trình có nghiệm

III. Bài tập tự luyện giải hệ phương trình bằng phương pháp đặt ẩn phụ

11,

Đặt Ẩn Phụ Để Giải Phương Trình Và Bất Phương Trình Chứa Căn / 2023

Phương trình và bất phương trình – Lý thuyết sử dụng ẩn phụ căn thức” của bạn Lương Tuấn Đức, sinh viên K60 Khoa Toán, Đại học Sư phạm Hà Nội.

Chuyên đề gồm 115 trang in A4, được soạn thảo công phu; lời giải chi tiết, phương pháp dễ hiểu, bài tập phong phú. Đây là một chuyên đề hay và là lài liệu hữu ích cho các học sinh THPT, đặc biệt là học sinh chuyên Toán và học sinh đang ôn thi đại học.

Bìa chuyên đề pt, bpt chứa căn

Trích lời dẫn của tài liệu:

“… Về cơ bản để làm việc với lớp phương trình, bất phương trình vô tỷ chúng ta ưu tiên khử hoặc giảm các căn thức phức tạp của bài toán. Phép sử dụng ẩn phụ là một trong những phương pháp cơ bản nhằm mục đích đó, ngoài ra bài toán còn trở nên gọn gàng, sáng sủa và giúp chúng ta định hình hướng đi một cách ổn định nhất. Đôi khi đây cũng là phương pháp tối ưu cho nhiều bài toán cồng kềnh. Tiếp theo lý thuyết sử dụng ẩn phụ căn thức (các phần 1 đến 3), kết thúc ý tưởng sử dụng một căn thức duy nhất, tác giả xin trình bày tới quý độc giả lý thuyết sử dụng ẩn phụ căn thức (phần 4), chủ yếu xoay quanh một lớp các bài toán chứa căn thức được giải thông ý tưởng sử dụng hai ẩn phụ đưa về phương trình đồng bậc – đẳng cấp bậc hai cơ bản kết hợp phân tích nhân tử – phương trình tích. Kỹ năng này đồng hành cùng việc giải hệ phương trình hữu tỷ đồng bậc – đẳng cấp, hệ phương trình chứa căn quy về đẳng cấp, ngày một nâng cao kỹ năng giải phương trình – hệ phương trình cho các bạn học sinh. Mức độ các bài toán đã nâng cao một chút, do đó độ khó đã tăng dần so với các phần 1 đến 3, đồng nghĩa đòi hỏi sự tư duy logic, nhạy bén kết hợp với vốn kiến thức nhất định của độc giả. Tài liệu nhỏ phù hợp với các bạn học sinh lớp 9 THCS ôn thi vào lớp 10 THPT đại trà, lớp 10 hệ THPT Chuyên, các bạn chuẩn bị bước vào các kỳ thi học sinh giỏi Toán các cấp và dự thi kỳ thi tuyển sinh Đại học – Cao đẳng môn Toán trên toàn quốc, cao hơn là tài liệu tham khảo dành cho các thầy cô giáo và các bạn trẻ yêu Toán khác.”

Bạn đọc quan tâm có thể tải file PDF của chuyên đề này:

Hệ Phương Trình Hai Ẩn Là Gì? Bài Tập Và Cách Giải Hệ Phương Trình 2 Ẩn / 2023

Hệ phương trình bậc nhất hai ẩn có dạng : (left{begin{matrix} ax+by=c a’x+b’y=c’ end{matrix}right.)

Minh họa tập nghiệm của hệ hai phương trình bậc nhất hai ẩn:

Định nghĩa hệ phương trình hai ẩn?

((d)parallel (d’)) thì hệ vô nghiệm

((d)times (d’)) thì hệ có nghiệm duy nhất

((d)equiv (d’)) thì hệ có vô số nghiệm

Hệ phương trình tương đương

Dùng quy tắc thế biến đổi hệ phương trình đã cho để được một hệ phương trình mới trong đó có một phương trình một ẩn

Giải phương trình một ẩn vừa có rồi suy ra nghiệm của hệ

Gọi (d): ax + by = c; (d’): a’x + b’y = c’. Khi đó ta có

Phương pháp giải hệ phương trình hai ẩn bậc nhất

Ví dụ 1: Giải hệ phương trình: (left{begin{matrix} x – y = 3 3x – 4y = 4 end{matrix}right.)

(left{begin{matrix} x – y = 3 3x – 4y = 4 end{matrix}right. Leftrightarrow left{begin{matrix} x = y + 3 3(y+3) – 4y = 4 end{matrix}right.)

Nhân cả hai vế của mỗi phương trình với một số thích hợp (nếu cần) sao cho các hệ số của một ẩn nào đó trong hai phương trình bằng nhau hoặc đối nhau.

Áp dụng quy tắc cộng đại số để được phương trình mới, trong đó có một phương trình mà hệ số của một trong hai ẩn bằng 0 ( phương trình một ẩn)

Giải phương trình một ẩn vừa thu được rồi suy ra nghiệm của hệ đã cho.

(Leftrightarrow left{begin{matrix} x = y + 3 3y + 9 – 4y = 4 end{matrix}right. Leftrightarrow left{begin{matrix} x = y + 3 y = 5 end{matrix}right. Leftrightarrow left{begin{matrix} x = 8 y = 5 end{matrix}right.)

Vậy hệ có nghiệm duy nhất là (8;5)

Ví dụ 2: Giải phương trình: (left{begin{matrix} x – 5y = 19, (1) 3x + 2y = 6, (2) end{matrix}right.)

Nhân cả 2 vế của phương trình (1) với 3 ta được: (left{begin{matrix} 3x – 15y = 57 3x + 2y = 6 end{matrix}right.)

Trừ từng vế của (1) cho (2) ta có: (-17y = 51 Rightarrow y=-3)

Vậy hệ phương trình có nghiệm duy nhất là (left{begin{matrix} x = 4 y = -3 end{matrix}right.)

Một số dạng hệ phương trình đặc biệt

Hệ hai phương trình hai ẩn x và y được gọi là đối xứng loại 1 nếu ta đổi chỗ hai ẩn x và y đó thì từng phương trình của hệ không đổi.

Đặt (S = x + y; P = xy, (S^2geq 4P))

Giải hệ để tìm S và P

Với mỗi cặp (S;P) thì x và y là hai nghiệm của phương trình (t^2 – St + P = 0)

Ví dụ 3: Giải hệ phương trình: (left{begin{matrix} x + y + 2xy = 2 x^3 + y^3 = 8 end{matrix}right.)

Đặt S = x + y, P = xy. Khi đó phương trình trở thành:

(left{begin{matrix} S + 2P = 2 S(S^2-3P) = 8 end{matrix}right. Leftrightarrow left{begin{matrix} P= frac{2 – S}{2} S(S^2-frac{6-3S}{2})=8 end{matrix}right.)

(Rightarrow 2S^3 + 3S^2 – 6S -16 = 0 Leftrightarrow (S-2)(2S^2+7S+8)=0 Leftrightarrow S = 2 Rightarrow P=0)

Hệ hai phương trình x và y được gọi là đối xứng loại 2 nếu ta đổi chỗ hai ẩn x và y thì phương trình bày trở thành phương trình kia và ngược lại

Trừ vế theo vế hai phương trình trong hệ để được phương trình hai ẩn

Biến đổi phương trình hai ẩn vừa tìm được thành phương trình tích

Giải phương trình tích ở trên để biểu diễn x theo y (hoặc y theo x)

Thế x bởi y (hoặc y bởi x) vào 1 trong hai phương trình trong hệ để được phương trình một ẩn.

Giải phương trình một ẩn vừa tìm được rồi suy ra nghiệm của hệ

Suy ra x, y là nghiệm của phương trình (t^2-2t=0 Leftrightarrow left[begin{array}{l} t = 0 t = 2 end{array}right.)

Vậy nghiệm của hệ phương trình đã cho là (0;2) hoặc (2;0)

Ví dụ 4: Giải hệ phương trình: (left{begin{matrix} x^2 = 3x + 2y y^2 = 3y + 2x end{matrix}right.)

Trừ vế với vế của hai phương trình của hệ, ta được:

(x^2 – y^2 = x-y Leftrightarrow (x-y)(x+y-1) = 0 Leftrightarrow left[begin{array}{l} x=y x=1-y end{array}right.)

Với (x=y Rightarrow x^2 = 3x Leftrightarrow left[begin{array}{l} x=0 x=3 end{array}right.)

Với (x=1-y Rightarrow y^2 = 3y + 2(1-y) Leftrightarrow y^2 -y -2 = 0 Leftrightarrow left[begin{array}{l} y=-1 Rightarrow x=0 y= 2 Rightarrow x=-1 end{array}right.)

Vậy hệ phương trình đã cho có nghiệm (x;y) = (0;0), (3;3), (-1;2), (2;-1)

Hệ phương trình đẳng cấp bậc hai có dạng: (left{begin{matrix} f(x;y) = a g(x;y) = b end{matrix}right.)

Trong đó f(x;y) và g(x;y) là phương trình đẳng cấp bậc hai, với a và b là hằng số.

Xét xem x = 0 có là nghiệm của hệ phương trình không

Nếu x = 0, ta đặt y = tx rồi thay vào hai phương trình trong hệ

Nếu x = 0 không là nghiệm của phương trình ta khử x rồi giải hệ tìm t

Thay y = tx vào một trong hai phương trình của hệ để được phương trình một ẩn (ẩn x)

Giải phương trình một ẩn trên để tìm x từ đó suy ra y dựa vào y = tx

Ví dụ 5: Giải hệ phương trình: (left{begin{matrix} 2x^2 + 3xy + y^2 = 15, (1) x^2 + xy + 2y^2 = 8, (2) end{matrix}right.)

Khử số hạng tự do từ hệ ta được: (x^2 + 9xy – 22y^2 = 0, (3))

Đặt x = ty, khi đó ((3) Leftrightarrow y^2(t^2+9t-22) = 0 Leftrightarrow left[begin{array}{l} y=0 t=2 t=-11 end{array}right.)

Với y = 0, hệ có dạng: (left{begin{matrix} 2x^2 = 15 x^2 = 8 end{matrix}right.) vô nghiệm

Với t = 2, ta được x = 2y ((2) Leftrightarrow y^2 = 1 Leftrightarrow left[begin{array}{l} y_{1} = 1 y_{2} = -1 end{array}right. Rightarrow left[begin{array}{l} left{begin{matrix} x_{1} = 2 y_{1} = 1 end{matrix}right. left{begin{matrix} x_{2} = -2 y_{2} = -1 end{matrix}right. end{array}right.)

Trong mặt phẳng tọa độ, ta gọi tập hợp các điểm có tọa độ thỏa mãn mọi bất phương trình trong hệ là miền nghiệm của hệ. Vậy miền nghiệm của hệ là giao các miền nghiệm của các bất phương trình trong hệ

Để xác định miền nghiệm của hệ, ta dùng phương pháp biểu diễn hình học như sau:

Với mỗi bất phương trình trong hệ, ta xác định miền nghiệm của nó và gạch bỏ miền còn lại.

Sau khi làm như trên lần lượt đối với tất cả các bất phương trình trong hệ trên cùng một mặt phẳng tọa độ, miền còn lại không bị gạch chính là miền nghiệm của hệ bất phương trình đã cho.

Vậy hệ phương trình có 4 cặp nghiệm.

Tác giả: Việt Phương

Đề Tài Skkn “Giải Pt Vô Tỉ Bằng Cách Đặt Ẩn Phụ” / 2023

Đề tài SKKN “Giải PT vô tỉ bằng cách đặt ẩn phụ”

NỘI DUNG SÁNG KIẾN KINH NGHIỆMPHƯƠNG TRÌNH VÔ TỈ VỚI CÁCH GIẢI BẰNG PHƯƠNG PHÁP ĐẶT ẨN PHỤA. Lý do chọn đề tàiToán học là môn học cơ bản trong nhà trường phổ thông, đối với học sinh môn toán nói chung và môn đại số nói riêng là một môn học khó. Bởi vậy không ít học sinh dù đã cố gắng xong kết quả môn toán nói chung và phân môn đại số nói riêng còn thấp so với yêu cầu. Để nâng cao chất lượng giáo dục toàn diện các nhà trường nói chung, các giáo viên trực tiếp giảng dạy nói riêng cần phải có giải pháp tích cực để nâng cao chất lượng môn đại số của học sinh THPTNhằm mục đích nâng cao chất lượng học sinh khi học môn đại số nói chung và phương trình vô tỉ nói riêng, nên tôi chọn sáng kiến kinh nghiệm ”Phương trình vô tỉ với cách giải bằng phương pháp đặt ẩn phụ”B. Mục đích nghiên cứu đề tàiXây dựng những dạng bài tập cơ bản và phương pháp đặt ẩn phụ để giải phương trình vô tỉ. Giúp học sinh nâng cao trách nhiệm trong học tập, khắc phục tính chủ quan tự mãn, đặc biệt là phát triển năng lực tự đánh giá. Giúp người thầy tự điều chỉnh hoạt động dạy và học cho phù hợp.C. Đối tượng và phạm vi nghiên cứuĐối tượng: Học sinh lớp 10, 11 trường THPT Tuần Giáo.Phạm vi nghiên cứu: Đề tài tập trung nghiên cứu các dạng bài tập cơ bản và phương pháp giải phương trình vô tỉ bằng cách đặt ẩn phụ.D. Nhiệm vụ nghiên cứu+ Giúp học sinh khối 10, 11 nắm chắc kiến thức cơ bản về phương trình vô tỉ với cách giải bằng phương pháp đặt ẩn phụ.+ Học sinh hứng thú học và đạt kết quả cao.E. Phương pháp nghiên cứu+ Nghiên cứu phương trình vô tỉ, đặc biệt với cách giải đặt ẩn phụ+ Lấy ý kiến+ Thử nghiệm sư phạm F. Nội dung nghiên cứu: Giải PT vô tỉ bằng phương pháp đặt ẩn phụKhi giải pt dạng , chúng ta đều biết phải bình phương hai vế để khử căn bậc hai. Vậy với pt , và một số pt dạng khác có giải được bằng phương pháp đó không? Đây là câu hỏi mà nhiều học sinh chưa trả lời được. Qua nhiều năm dạy học sinh THPT tôi rút ra được kinh nghiệm giải pt vô tỉ bằng phương pháp đặt ẩn phụ. I. Dạng 1 : Sử dụng ẩn phụ để chuyển PT ban đầu thành 1 pt với ẩn phụ.1)Các phép đặt ẩn phụ thường gặp :PT chứa và f(x)Đặt t = ( t 0 ) f(x) = t2 PT chứa , và . = k ( k= const)Đặt t= ( t 0 ) = PT chứa ± ; và f(x) + g(x) = k ( k= const) Đặt t = ± = ± PT chứa Đặt x = sint với thoặc x = cost với t PT chứa Đặt x = tant với thoặc x = cott với t PT dạng đặt ta thu được pt bậc hai

PT dạng đặt ta được pt bậc hai PT dạng đặt ta thu được pt bậc hai PT dạng đặt ta được pt bậc hai 2) Chú ý : Với PT vô tỉ sử dụng phương pháp đặt ẩn phụ, nhất thiết phải tìm điều kiện đúng cho ẩn phụ.3) Các ví dụ : VD1 : GPT : + = 3 (1) Đặt t = x2 – 3x + 3 Ta có : t = Đk t Khi đó (1) có dạng + = 3 t + t + 3 + 2 = 9 = 3 – t t = 1 x2 – 3x + 3 = 1 KL : PT có 2 nghiệm x= 1 ; x = 2.VD 2 :GPT : 2×2 + = 8x + 13 (2)ĐK : x2 – 4x -5 0 x -1 hoặc x 5 PT ( 2 ) = -2×2 + 8x + 13 (2′) Đặt y = ĐK y 0 Ta có y2 = x2 – 4x – 5 PT ( 2′) y = – 2y2 + 3 2y2 + y – 3 = 0 loại

Với y = 1 x2 – 4x – 5 = 1 x2 – 4x – 6 = 0 tm ĐK