Top 12 # Xem Nhiều Nhất Cách Giải Hệ Phương Trình 4 An Bằng Máy Tính Fx 570Es Plus Mới Nhất 3/2023 # Top Like | Techcombanktower.com

Giải Hệ Phương Trình Bằng Máy Tính Fx 570 Es Plus

Bí Kíp Công phá Hệ Phương Trình bằng fx 570 ES PLUS Chuyên đề đặc biệt 1 Bí Kíp Công Phá Kì Thi THPT Quốc Gia Giải Hệ Phương Trình Bằng Máy Tính Fx 570 ES PLUS Version 2.0 I, Giới thiệu Xin chào tất cả các em! Khi các em đang đọc những dòng này là các em đang nắm trên tay bí kíp giải hệ phương trình giúp tăng khả năng lấy điểm thứ 9 của các em một cách dễ dàng hơn. Hi vọng, sau khi đọc xong tài liệu này, các em sẽ cảm thấy Hệ Phương Trình thật đơn giản và không còn thấy sợ câu thứ 9 này nữa. Ở phiên bản 2.0 này anh sẽ bổ sung, sửa đổi, hoàn thiện, nâng cấp rất nhiều vấn đề của version 1.0 II, Lý do chọn đề tài Có rất nhiều em gửi thắc mắc tới anh : "tại sao anh lại giải câu hệ như vậy ?" đó cũng là câu hỏi anh đã từng băn khoăn hồi còn ôn thi như các em, mà không một thầy giáo nào giải thích cho anh cả, anh phải tự mò mẫm cho mình 1 lý do, các thầy chỉ dạy cho mình phương pháp làm là chính chứ rất ít khi các thầy giải thích tại sao và thường chỉ đưa ra dấu hiệu là người ta cho thế này thì mình làm thế này. Nhưng hôm nay, anh sẽ trình bày với các em một hướng đi mới trong việc công pháp điểm thứ 9 này với máy tính fx 570 ES PLUS, đảm bảo học xong các em ở mức Trung Bình - khá chăm chỉ 1 chút cũng sẽ làm được, thực tế là sau khi anh phát hành version 1.0 đã khá nhiều bạn quay lại cảm ơn anh, vì đã làm thành công nhiều hệ phương trình. III, Yêu cầu chung 1. Có tinh thần Quyết tâm đỗ Đại Học !!! 2. Có kiến thức căn bản sử dụng các phương pháp thế, đưa về phương trình tích, phương pháp hàm số, phương pháp đánh giá... Ví dụ như: Đưa về phương trình tích 0 . 0 0 A A B B      Phương pháp hàm số: ( ) ( )f x f y mà hàm f đồng biến ( nghịch biến) trên đoạn  ;a b và  , ;x y a b Thì phương trình có nghiệm duy nhất là x = y Phương pháp đánh giá: thường là sử dụng BĐT Cô-Si vì BĐT này có trong SGK lớp 10 Ta có : , 0; 2a b a b ab    3. Có 1 chiếc máy tính có tính năng SOLVE : fx 570 es plus, fx 570 es, .... Lý do anh chọn Fx 570 ES PLUS vì đây là máy tính hiện đại nhất được mang vào phòng thi bây giờ và là bản nâng cấp của fx 570 es nên sẽ cho tốc độ cao hơn chút và có một số tính năng mới. IV, Nội Dung Truy cập chúng tôi để download thêm các tài liệu học tập khác kh on gb oc uo .co m Bí Kíp Công phá Hệ Phương Trình bằng fx 570 ES PLUS Chuyên đề đặc biệt 2 Anh sẽ hướng dẫn các em công phá tất cả các hệ phương trình từ 2010 cho tới nay bằng máy fx 570 es plus theo cách tự nhiên và dễ hiểu nhất. * Đường lối chung để giải 1 hệ phương trình : Vậy vai trò của máy ở đây là gì ? Máy tính sẽ giúp ta làm chủ cuộc chơi chứ không phải tác giả nữa, tức là nhờ máy ta sẽ tìm được mối quan hệ ở Bước 2 để áp dụng phương pháp cho thích hợp, tránh hiện tượng "mò", và ở Bước 3 cũng vậy. Vai trò chính là giúp ta định hướng cách làm nhanh hơn.  Nội dung chính của tài liệu này: (Anh chỉ bám sát nội dung thi, không đi quá xa đà vào những hệ quá khó, quá phức tạp so với đề thi) Anh sẽ chia ra làm 2 dạng cơ bản : 1. Từ 1 phương trình là đã tìm luôn được quy luật ( 90% Đề thi thử và ĐH cho dạng này) Biểu hiện: khi cho Y nguyên thì X, 2X tìm được là số nguyên 2. Phải kết hợp 2 phương trình thì mới tìm ra được quy luật ( một số đề thi thử cho) Biểu hiện là cho Y nguyên nhưng được X, 2X rất lẻ Muốn tìm được quy luật giữa x và y của dạng này các em cần kết hợp 2 phương trình như cộng trừ 2 vế để khử số hạng tự do. *Sau khi tìm được mối liên hệ giữa X và Y thế vào 1 phương trình còn lại thì lại có 2 khả năng chính a. Bấm máy phương trình ra nghiệm đẹp : vậy là xác suất 90% xử lý được b. Bấm máy phương trình ra nghiệm xấu: Từ 1 trong 2 phương trình, hoặc phức tạp hơn là phải kết hợp 2 phương trình Mối quan hệ giữa x và y (muốn làm được điều này thì các em phải dùng các pp thế, đưa về phương trình tích, ẩn phụ, hàm số, đánh giá.) Thế vào 1 trong các phương trình để đưa về phương trình 1 ẩn, có thể là giải được luôn, hoặc có thể là một phương trình chứa căn phải dùng thêm phương pháp mới giải được, tùy vào mức độ đề thi Truy cập chúng tôi để download thêm các tài liệu học tập khác ho gb oc uo .co m Bí Kíp Công phá Hệ Phương Trình bằng fx 570 ES PLUS Chuyên đề đặc biệt 3 thường đề ĐH họ chỉ cho nghiệm xấu dạng a a b c       là những nghiệm của phương trình bậc 2, muốn xử lý được ta phải áp dụng định lý Vi-et đảo, anh sẽ nói rõ trong bài tập. Với phương pháp này các em có thể xử lý được 90% các hệ trong đề thi thử THPT Quốc Gia và đề thi chính thức, phương pháp này còn giúp chúng ta luyện giải phương trình vô tỷ rất tốt, thậm chí là bất phương trình vô tỉ. Nhưng phương pháp nào cũng có giới hạn của nó, có điểm mạnh điểm yếu riêng, anh sẽ trình bày cụ thể trong quá trình giải bài. *Dạng 1: Các mối quan hệ được rút ra từ 1 phương trình * Các ví dụ Ví dụ 1: (CĐ-2014) Giải hệ phương trình sau 2 2 2 2 x xy y 7 (x, y R) x xy 2y x 2y           * Nhận xét chung: Hệ gồm 2 phương trình 2 ẩn, điều đặc biệt là ở chỗ 1 phương trình có thể biến đổi được còn 1 phương trình thì không có gì mà biến đổi, nhìn qua thì các em thấy như vậy Vậy dàn ý chung là: từ phương trình biến đổi được đưa ra mối quan hệ x và y rồi thế vào phương trình không biến đổi được Bằng giác quan ta sẽ tìm các nào đó để xử lý phương trình số 2, các em đa số là sẽ cứ viết dùng đủ mọi cách nhóm và rồi tự biến đổi mò 1 lúc thì nó ra mối quan hệ x và y. Nhưng anh sẽ trình bày 1 phương pháp sử dụng máy tính để tìm mối liên hệ như sau: Sử dụng tính năng Solve: Các em biến đổi phương trình 2 về hết 1 vế : 2 2X XY 2Y X 2Y 0     Ấn trên máy: Alpha X 2x - Alpha X Alpha Y - 2 Alpha Y 2x Alpha + alpha X - 2 alpha Y ( không cần ấn = 0, khác version 1.0) Giải thích "Alpha X, Alpha Y" là gọi biến X, biến Y nhưng với máy tính thì mặc định X là biến, Y là tham số Sau đó các em bấm: Shift Solve Máy hiện : Y?  tức là máy hỏi ban đầu cho tham số Y bằng mấy để còn tìm X Các em khởi tạo giá trị ban đầu cho Y là 0 bằng cách nhập: 0 = Truy cập chúng tôi để download thêm các tài liệu học tập khác k on gb oc uo c.c om Bí Kíp Công phá Hệ Phương Trình bằng fx 570 ES PLUS Chuyên đề đặc biệt 4 Bây giờ máy sẽ xử lý Máy hiện: X = 0 tức là khi y=0 thì có nghiệm x=0 -R= 0 sai số của nghiệm là 0 Rồi vậy là được Y=0 thì X=0 Tiếp theo các em ấn "mũi tên chỉ sang trái" để quay trở về phương trình Lại bắt đầu khởi tạo giá trị ban đầu Y=1, X=0 Thì máy lại tính ra X = 2 Cứ như vậy tới Y=5, X =0 ta được bảng giá trị sau: Bảng 1: Y 0 1 2 3 4 5 X 0 2 -3 -4 -5 -6 *Cách 2: phức tạp hơn nhưng kiểm soát được toàn bộ nghiệm Với Y = 0 ta đã tìm được 1 nghiệm X = 0 Để xem phương trình có còn nghiệm nào khác không các em làm như sau: Ấn mũi tên sang ngang sửa phương trình thành: 2 2(X XY 2Y X 2Y): (X 0)     Phương trình này để bỏ nghiệm vừa tìm được và tìm nghiệm mới. Sau đó lại bấm như ban đầu thì được X = -1 Sau đó lại ấn 2 2X XY 2Y X 2Y (X 0)(X 1)       Sau đó lại bấm giải nghiệm thì máy báo " Can't solve" tức là vô nghiệm hay hết nghiệm rồi Vậy là được Y=0 thì X=0, X = -1 Tiếp theo các em ấn "mũi tên chỉ sang trái" để quay trở về phương trình Ta lại phải sửa phương trình thành: 2 2X XY 2Y X 2Y    Lại bắt đầu khởi tạo giá trị ban đầu Y=1, X=0 Thì máy lại tính ra X = 2 hoặc -2 Cứ như vậy tới Y=5 thì được các kết quả như sau: Bảng 2: Y 0 1 2 3 4 5 X 0 hoặc -1 2 hoặc -2 -3 hoặc 4 -4 hoặc 6 -5 hoặc 8 -6 hoặc 10 Truy cập chúng tôi để download thêm các tài liệu học tập khác kh on bo cu oc .co m Bí Kíp Công phá Hệ Phương Trình bằng fx 570 ES PLUS Chuyên đề đặc biệt 5 Cách 2 này tuy đẩy đủ nhưng sẽ rất mất thời gian chỉnh sửa phương trình nên trong tài liệu đa phần anh sẽ giải bằng cách 1, vì những bài thi ĐH không quá phức tạp *Cách 3: Để tìm nghiệm khác ngoài 1 nghiệm tìm được Ví dụ khi Y=0, lúc máy hỏi " Solve for X" Các em ấn 0 = sẽ tìm được nghiệm X = 0 Các em ấn "-9=" thì sẽ được nghiệm X = -1 Các em ấn "9=" thì sẽ được nghiệm X=0 Vậy là ta đã tìm được ngay 2 nghiệm X = -1 và X =0 khi Y= 0 Anh rất hay dùng cách 1 cho hệ và cách 3 cho phương trình 1 ẩn, để tăng tốc độ làm bài Các kết quả này hoàn toàn là do máy, từ bảng 1 ta thấy khi Y = 2 tới Y=5 anh thấy nó xuất hiện 1 quy luật gì đó Tại Y=0, Y=1 không xuất hiện quy luật do có nhân tử khác gây nhiễu bởi vì tính năng Solve là tính năng dò nghiệm theo công thức Newton nên nó sẽ tìm nghiệm gần với giá trị biến hiện tại của X , ở đây các TH chúng ta đều khởi tạo giá trị ban đầu X = 0. Từ Y=2 anh thấy nó xuất hiện 1 quy luật gì đó, dễ dàng nhận thấy là x+y+1 = 0 Vậy anh sẽ biến đổi phương trình 2 theo xem được không: Thêm bớt để ép nhân tử : 2 2 2 2 2 x xy 2y x 2y x xy 2y x 2y 0 x(x y 1) 2xy 2y 2y 0 x(x y 1) 2y(x y 1) 0 (x 2y)(x y 1) 0                               Vậy nghiệm vừa nãy bị nhiễu là do x-2y =0 Còn lại thì dễ dàng rồi nào: 2 ( 1) x y x y      thế vào phương trình đầu tiên * x=2y thì: 2 2 24 2 7 1y y y y      Anh nói thì dài thôi chứ lúc làm thì nhanh lắm!!! Như vậy là anh vừa trình bày chi tiết cách giải 1 bài hệ bằng máy tính casio fx-570 ES Plus nhưng bài trên là 1 bài dễ và chưa sử dụng một ứng dụng chính của Solve là tìm nghiệm phương trình 1 ẩn dù nó có phức tạp tới đâu. Truy cập chúng tôi để download thêm các tài liệu học tập khác k on gb oc uo c.c om Bí Kíp Công phá Hệ Phương Trình bằng fx 570 ES PLUS Chuyên đề đặc biệt 6  Nhận xét chung Thấy ngay phương trình số 2 khó biến đổi, phương trình 1 có vẻ dễ hơn , vậy ta thử xem nào Lưu ý ở bài này: điều kiện pt 1 là x y bởi vậy lúc khởi tạo giá trị ban đầu " Solve for X" các em phải nhập số lớn hơn Y, chẳng hạn là "9=" . Tại sao lại thế ? Vì nếu em cho Y = 3 mà giá trị ban đầu X = 2 thì máy sẽ có 2 kiểu dò nghiệm 1 là : 2 2,1 2,2 2,3 ....    2 là : .... 1,7 1,8 1,9 2    Nhưng đi theo đường nào thì x y cũng không xác định ngay, do đó máy dừng dò nghiệm và báo "Can't Solve" Do đó phải khởi tạo giá trị ban đầu của X lớn hơn Y Các em làm tương tự, anh cho kết quả luôn: Y 0 1 2 3 4 5 X 1 2 3 4 5 6 Dựa vào bảng ta thấy luôn : 1x y  hoặc 1x y  Vậy là đầu tiên anh đi theo hướng "x-y-1=0" trước vì vế phải có sẵn rồi kìa, chỉ cần biến đổi những số còn lại xem có được không là chuyển hướng luôn (1 y) x y x 2 (x y 1) y (1 y) x y x 2 (x y 1) y 0 (1 y) x y (x y 1) (y 1) (x y 1) y 0 (1 y) x y 1 (x y 1) 1 y 0                                             Tới đây phải nói là quá may mắn    (1 )( 1) 1 1 0 1 0 1 11 0 pt y x y y x y x y x y yy                         Ví dụ 2: (ĐH-B-2014) Giải hệ phương trình 2 (1 y) x y x 2 (x y 1) y 2y 3x 6y 1 2 x 2y 4x 5y 3                  (x, y là các số thực) Truy cập chúng tôi để download thêm các tài liệu học tập khác kh on gb oc uo c.c om Bí Kíp Công phá Hệ Phương Trình bằng fx 570 ES PLUS Chuyên đề đặc biệt 7 Thế vào phương trình 2 ta được: Với y = 1 thì 9-3x =0  x=3 Với y = x - 1 2 2 2 3( 1) 6 1 2 1 1 2 3 2 1 y y y y y y y y              Điều kiện ban đầu 0y  mà bây giờ lại có 1y  Vậy  0;1y Dễ thấy VT đồng biến với điều kiện trên, VP thì nghịch biến, các em tính đạo hàm ra sẽ thấy nên nếu phương trình có nghiệm thì sẽ là nghiệm duy nhất Thử bấm máy xem nào: 2 alpha X 2x + 3 alpha X -2 Alpha = 1- alpha X Sau đó bấm Shift solve 0 ,5 = Ta đang tìm X trong khoảng [0;1] mà nên phải khởi tại giá trị ban đầu X = 0,5 chẳng hạn được X=0,618033.. Nếu x nguyên thì xong rồi đó nhưng đằng này có vẻ không còn may mắn nữa. Vậy Bộ Giáo Dục cố tình ra nghiệm lẻ để làm khó ta, nhưng anh đã có cách Ta thử bình phương nghiệm X đó lên xem có đẹp không nhưng câu trả lời là không! Hi vọng nghiệm này không quá xấu, nó có dạng a b c  là dạng nghiệm của phương trình bậc 2 thì ta sẽ giải quyết được. *Tư duy ở đây là: phương trình trên nếu bình phương lên sẽ ra bậc 4 đầy đủ nên có thể phân tích được thành: 2 2 ' '(x )( )Sx P x S x P    Do đó anh chỉ cần tìm được 1 nhân tử 2(x )Sx P  là xong, vậy ta cần tìm 3 trong 4 nghiệm Về lý thuyết là vậy nhưng thực tế anh tìm cả 4 nghiệm luôn Bản chất của phương trình trên là bậc 4 nên ta sẽ bình phương lên để mất căn rồi chuyển sang 1 vế Các em nhập lại phương trình thành: (2 alpha X 2x + 3 alpha X -2) 2 - (1- alpha X) Các em bấm dấu "=" để lưu phương trình vào máy Sau đó bấm Shift solve 0 = Máy báo X = 0,3228. Sau đó các em bấm RCL X Shift STO A để lưu nghiệm X vừa tìm được vào A Vậy là được 1 nghiệm, để tìm nghiệm thứ 2 ta làm như nhau : Truy cập chúng tôi để download thêm các tài liệu học tập khác kh on g oc uo c.c om Bí Kíp Công phá Hệ Phương Trình bằng fx 570 ES PLUS Chuyên đề đặc biệt 8 Nhấn nút đẩy lên 2 lần để tìm phương trình ta đã lưu Đưa mũi tên chỉ sang trái, sửa phương trình thành: ((2 alpha X 2x + 3 alpha X -2) 2 - (1- alpha X)): ( X-A) Sau đó bấm Shift solve Máy hỏi A? 0,3228.. thì các em bấm dấu = Máy hiện "Solve for X" thì các em cũng ấn 0= Máy báo X = 0,6180.... Các em ấm phím đẩy sang trái rồi ấn = để lưu lại phương trình Sau đó các em bấm RCL X Shift STO B để lưu nghiệm X vừa tìm được vào B Vậy đã có nghiệm thứ 2, các em lại ấn nút đẩy lên 2 lần, rồi đẩy sang trái để sửa phương trình tìm nghiệm thứ 3 các em lại sửa thành ((2 alpha X 2x + 3 alpha X -2) 2 - (1- alpha X)) : ( X-A)(X-B) Sau đó bấm Shift solve = = 0= Được nghiệm thứ 3 là : X= -1,61803.. Các em ấm phím đẩy sang trái rồi ấn = để lưu lại phương trình Sau đó các em bấm RCL X Shift STO C để lưu nghiệm X vừa tìm được vào C Tương tự phương trình tìm nghiệm thứ 4 : ((2 alpha X 2x + 3 alpha X -2) 2 - (1- alpha X)) : ( X-A)(X-B)(X-C) Sau đó bấm Shift solve = = = 0= Các em sẽ được nghiệm thứ 4 là : X = -2,3228 Vậy ta đã được 4 nghiệm là A,B,C,X Ta biết rõ ràng là nghiệm B = 0,618 là nghiệm của phương trình ban đầu nên ta sẽ xét các tích BA,BC,BX xem tích nào đẹp Thấy ngay: BC = - 1 và B+C = -1 Vậy phương trình chứa nghiệm B,C này là 2 1x x  ( định lý Vi-et đảo) Đây chính là cách phân tích phương trình bậc 4 thành nhân tử với máy tính Vậy ta sẽ cố nhóm để xuất hiện nhân tử này: với bài thì là 2 1y y  , ép nhân tử như sau: Truy cập chúng tôi để download thêm các tài liệu học tập khác kh on gb oc uo c.c om Bí Kíp Công phá Hệ Phương Trình bằng fx 570 ES PLUS Chuyên đề đặc biệt 9 2 2 2 2 2 2 2 3 2 1 2( 1) 1 0 (1 ) 2( 1) 0 1 1 ( 1)(2 ) 0 1 5 1 5 1 ( ) 2 2 1 0 5 1 ( ) 2 y y y y y y y y y y y y y y y y y y tm x y y y loai                                           Ví dụ 3: (ĐH-AA1-2014) Giải hệ phương trình 2 3 x 12 y y(12 x ) 12 x 8x 1 2 y 2            (x, y là số thực) *Nhận xét chung: Ta thấy phương trình 1 dễ biến đổi hơn phương trình 2 Điều kiện 2 2 12 12 y x     * Anh cho bảng kết quả bấm máy luôn Y 2 3 4 5 6 12 0 X 3,16 3 2,828 2,64 2,44 0 3,464 Nhận xét chung là Y tăng thì X giảm Với Y=2, Y=4, Y=5, Y=6 thì kết quả xấu quá ta thử bình phương lên xem có sử dụng được không Y 2 3 4 5 6 12 0 2X 9,9999 9 8 7 6 0 12 Chứng tỏ các bác ở BGD cũng không làm khó ta lắm Nhận thấy 2 12y x  Căn cứ vào phương trình 1 thì sẽ là 212y x  Làm sao để chứng minh điều này, dễ thấy không thể phân thích thành nhân tử như bài trước được Giờ chỉ còn hàm số và đánh giá mà thôi Do x, y không độc lập lên không dùng hàm số được ( kinh nghiệm nhỏ của anh) Vậy thử đánh giá, mà có 2 tích nên chỉ có Cô-si thôi Truy cập chúng tôi để download thêm các tài liệu học tập khác on gb oc uo c.c om Bí Kíp Công phá Hệ Phương Trình bằng fx 570 ES PLUS Chuyên đề đặc biệt 10 Chúng ta dùng chức năng CALC để tính giá trị biểu thức Các em nhập nguyên vế trái vào: 2x 12 y y(12 x )   Alpha X 12 - alpha Y + alpha Y - (12 - alpha X 2x ) Sau đó các em bấm CALC Máy hiện X? em nhập 1 = Máy lại hỏi Y? em nhập vào là 11= hoặc tùy ý X 1 1 2 2 3 3 4 Y 10 11 10 11 8 11 Giá trị hàm 11,9 12 11,7 11,38 10,89 8,7 error Ta nhận thấy 12VT VP  vậy đánh giá là phương pháp đúng đắn Áp dụng Bất đẳng thức Cô-si ta được: 2 2 2 x (12 y) y (12 x )x 12 y y(12 x ) 12 2 2           Dấu "=" xảy ra khi 22 012 1212 xx y y xy x          Thế vào phương trình 2 ta được: 3 28 1 2 10x x x    Ta bấm máy xem có nghiệm nguyên không , có thì coi như xong Các em bấm như sau: Alpha X Shift 2x -8 Alpha X -1 = 2 10 - alpha X 2x Sau đó ấn Shifl Solve 9= Ra được x=3, tới đây có thể mỉm cười được rồi Ta sẽ biến đổi theo x-3 = 0 3 2 3 2 8 1 2 10 ( 8 3) 2(1 10 ) 0 x x x x x x            Anh ghép 1 với 210 x vì khi nhân liên hợp nó xuất hiện 2 9 ( 3)( 3)x x x    bấm máy cái này Được x=3 và 2 nghiệm xấu nhưng không sao vậy là được rồi Ta tiến hành chia 3 8 3x x  cho (x-3) được 2 3 1x x  Truy cập chúng tôi để download thêm các tài liệu học tập khác kh on gb oc uo c.c om Bí Kíp Công phá Hệ Phương Trình bằng fx 570 ES PLUS Chuyên đề đặc biệt 11 Vậy ta có: 2 2 2 2 2 2 2 ( 3)( 3 1) 2(1 10 ) 0 9 ( 3)( 3 1) 2. 0 1 10 2( 3) ( 3) 3 1 0 1 10 x x x x x x x x x x x x x x                             Ta có 0x  nên 2 2 2( 3) 3 1 0 1 10 x x x x        Do đó phương trình có nghiệm duy nhất x=y=3 Ví dụ 4: Đề thi thử THPT Quốc Gia của Sở GD TP. HCM Giải hệ phương trình :   22 2 2 1 2 2 1 y y y x x x y x y y y x               Giải: Khi nhìn vào 2 phương trình này thì ta thấy phương trình số 2 dễ biến đổi hơn phương trình 1, em nào không nhìn ra điều này thì đi thử cả 2 phương trình cũng được. Điều kiện: 2, 0x y  Các em nhập phương trình : 2 1x y x y y y x      như sau: Alpha X + 1 AlphaX AlphaY  + AlphaY AlphaX = Alpha Y 2x + Alpha Y Sau đó các em bấm: Shift Solve máy sẽ hiện " Y?" các em nhập 1 = Máy sẽ hiện " Solve for X" tức là khai báo giá trị ban đầu của X Các em bấm " 0 = " Máy sẽ trả về giá trị nghiệm X = 0,5. Vậy Y = 1 thì X = 0,5 Để tìm nghiệm tiếp với Y=2 thì các em bấm : Shift Solve máy sẽ hiện " Y?" các em nhập 2 = Cứ như vậy với Y = 3,4,5 ta thu được bẳng giá trị sau: Y 1 2 3 4 5 X 0,5 0,333= 1/3 0,25 = 1/4 0,2 = 1/5 0,16666.. =1/6 Truy cập chúng tôi để download thêm các tài liệu học tập khác kh on gb oc uo c.c om Bí Kíp Công phá Hệ Phương Trình bằng fx 570 ES PLUS Chuyên đề đặc biệt 12 Dựa vào bảng, ta thấy xuất hiện quy luật : 1 1 0 1 X XY X Y       Ta sẽ ép để xuất hiện nhân tử trên như sau: 2 2 2 3 2 2 2 1 1 0 ( 1) 0 ( 1) ( 1) 0 ( 1)( ) 0(3) x y x y y y x xy x y y y y x xy x x y y x xy xy x x y xy x xy x x y                                Rất may ở bài này chúng ta không bị nhiễu bởi nhân tử 2x y như ở ví dụ 1. Với 2, 0x y  thì 1 0xy x   nên từ (3) ta có : 2x y thế vào phương trình (1) ta c

Cách Sử Dụng Máy Tính Casio Fx 580Vnx, 570Vn Plus, 570Es Plus

Cách tìm x trên máy tính Casio fx 570VN Plus, 580VNX, 570ES Plus

Lấy ví dụ: Giải phương trình: x2−x=0

Để tìm x trên máy tính Casio fx 580VNX, 570VN Plus hay 570ES Plus, bạn thực hiện theo các bước sau:

Nhập vào biểu thức: x2−x, bấm =để lưu phương trình.

Nhập vào 0

Tìm nghiệm thứ hai: Di chuyển con trỏ về cuối biểu thức và đóng ngoặc biểu thức:

Chia biểu thức này cho (x−A)(x−A):

Bấm SHIFT SOLVE, nhập vào 0=0

Thu được nghiệm thứ hai:

back to menu ↑

Cách reset máy tính Casio fx 570VN Plus, 580VNX, 570ES Plus

Để khôi phục cài đặt, bạn bấm: SHIFT + 9

Reset máy tính Casio fx 570VN Plus, 580VNX và 570ES Plus sẽ bao gồm 3 tùy chọn:

back to menu ↑

Cách bấm máy tính số phức liên hợp

back to menu ↑

Cách bấm máy tính đạo hàm

Thời gian đầu có thể thao tác tính đạo hàm bằng máy tính còn mất thời gian do chưa quen, tuy nhiên đừng quá lo lắng, nếu bạn luyện tập thường xuyên thì dần dần sẽ quen và bấm nhanh hơn. Chúng ta bắt đầu thôi nào các bạn:

back to menu ↑

Cách chơi game trên máy tính Casio fx 580VNX

Đang cập nhật…

Cách Tính Thống Kê Bằng Máy Tính Casio Fx 570 Vn Plus

Không còn gặp khó khăn trong tính thống kê khi có máy tính Casio fx 570 VN Plus.

 

Một xạ thủ thi bắn súng. Kết quả số lần bắn và điểm số được ghi như sau:

Điểm 4   5   6   7   8   9   Lần bắn 8 14 3 12 9 13

Tính

a) Tổng số lần bắn

b) Tổng số điểm

c) Số điểm trung bình cho mỗi lần bắn

Giải trên máy tính Casio fx 570VN PLUS

Gọi chương trình thống kê 

Chọn cột tần số 

Nhập các dữ liệu

Nhập cột X

Nhập cột tần số (FREQ)

       

       

       

  

a) Tổng số lần bắn

(n)

ta được kết quả tổng số lần bắn là 59

b) Tổng số điểm

ta được kết quả tổng số điểm là 393

c) Số điểm trung bình cho mỗi lần bắn

như vậy ta được kết quả số điểm trung bình của mỗi lần bắn là 6,66 CHÚC BẠN THÀNH CÔNG!

 

GỌI NGAY 08.8863.1839 – 0919. 280. 820

ĐỂ ĐƯỢC TƯ VẤN LỰA CHỌN SẢN PHẨM PHÙ HỢP VỚI BẠN HOÀN TOÀN MIỄN PHÍ

chúng tôi Sản phẩm chính hãng – Bảo hành 2 năm

Địa chỉ: 2126/42 Quốc Lộ 1A – P. Tân Thới Hiệp – Q12 – chúng tôi ( bên hông bên phải nhà Thờ Tân Hưng – Ngã Tư Quốc Lộ 1A với Nguyễn Văn Quá)

Hotline 1: 08.8863.1839 - 0919 280 820

 

Máy Tính Cá Nhân Cho Học Sinh Vinacal 570Es Plus

Mã sản phẩm: 4855

Bảo hành: 12 tháng

Tình trạng: Hết hàng

Trạng thái: Mới 100%. Chính hãng

Giá thị trường: 450.000 VNĐ

Giá bán: 375.000 VNĐ [Giá đã có VAT]

HỖ TRỢ KHÁCH HÀNG

HOTLINE

Hỗ trợ kỹ thuật

0973.142.933 – 0973.746.998

Hỗ trợ mua hàng

098.990.2222 – 024.3733.4733

Nhập liệu Thông Minh, hiển thị trực tiếp khi nhập dữ liệu. Hiện đáp số dạng đẹp (rút gọn), có nghiệm phức. Giải PT và hệ PT. Tính Tích phân/Đạo hàm/Vectơ/số Phức/Ma Trận/Hệ cơ số n/Logic/Thống kê biến đôi/Hồi qui…. 40 hằng số khoa học, 40 cặp đơn vị chuyển đổi, 9 biến nhớ Được Bộ GD&ĐT cho phép mang vào phòng thi

– Một máy duy nhất dùng cho cấp hai, cấp ba và có thể cho đại học

– Ngoài tất cả các tính năng của máy 570 (máy dùng cho học sinh cấp 3 ) và tính năng nhập xuất giống như sách giáo khoa hay giải phương trình bậc hai ra nghiệm vô tỉ ( máy ES hay ES Plus ), Máy Vinacal 570ES Plus còn có các tính năng nổi trội sau:

Tính toán bên trong 18 chữ số

Giải hệ phương trình bậc nhất 4 ẩn và ma trận 4 dòng , 4 cột

Tìm thương số ngyên Q và số dư R trong phép chia số nguyên (lệnh Q…R trong SHIFT Vinacal)

Tìm USCLN và BSCNN (lệnh GCD và LCM trong SHIFT Vinacal)

Phân tích ra thừa số nguyên tố (lệnh FACT trong SHIFT Vinacal)

1/ Tìm thương nguyên Q và số dư R khi chia 123456 cho 789 KQ Q=156 , R=372 ,Chia 23 8 cho 456 KQ Q = 171734616 , R = 385

3/Tìm BSCNN và USCLN của 12081839 ,15189363 thì ra ngay BSCNN=6850402713, USCLN = 26789

4/Tìm BSCNN và USCLN của 12081839 , 15189363 , 80367 cũng ra ngay BSCNN=6850402713 và USCLN = 26789

5/Phân tích 275400 ra thừa số nguyên tố ,ta tính được ngay FACT (275400)=2 3×3 4×5 2× 17

6/Tìm phương trình mặt cầu ngoại tiếp tứ diện ABCD với A(6;-2;3), B(0;1;6),C(2;0;-1), D(4;1;0), ta giải ngay hệ phương trình bốn ẩn ra ngay a=-2;b=1,c=-3;d=-3Trong phương trình tổng quát x 2 + y 2 + z 2 + 2ax +2by +2cz +d =0

7/Chỉ dùng máy kèm vài thủ thuật , ta tìm được 16594 4 =75823590002618896

8/Máy không cho phép tính về số tuần hoàn nhưng ta có thể đổi thành phân số rồi tính.

Theo Quy chế thi tốt nghiệp trung học phổ thông và Quy chế tuyển sinh đại học và cao đẳng, các máy tính cầm tay được phép đem vào phòng thi là các máy tính: Không có chức năng soạn thảo văn bản (như tính năng ghi chép, ghi số điện thoại…); Không có thẻ nhớ cắm thêm vào.

Theo đó, danh sách cụ thể các máy tính cầm tay thông dụng (làm được các phép tính số học, các phép tính lượng giác và các phép tính siêu việt) đáp ứng yêu cầu cơ bản nói trên là: Casio FX 95, FX 220, FX 500A, FX 500 MS, FX 500 ES, FX 500VNPlus, FX 570 MS, FX 570 ES, FX 570 ES Plus và FX 570 VN Plus; VinaCal 500MS, 570 MS, 570 ES Plus và 570 ES Plus II; Vietnam Calculator VN-500RS, VN 500 ES, VN 500 ES plus function, VN 570 RS, VN 570 ES và VN-570ES Plus; Sharp EL 124A, EL 250S, EL 506W, EL 509WM; Canon FC 45S, LS153TS, F710, F720; và các máy tính tương đương.

(Viết đánh giá của bạn)

Sản phẩm cùng loại

Máy tính cá nhân cho học sinh Vinacal 570ES PLUS II (417 chức năng)

Giá thị trường: 550.000 VND

Mô tả sản phẩm:

– Chuyên dụng cho học sinh cấp 3 với 417 chức năng.

– Màn hình thể hiện 15 số và hiển thị như sách giáo khoa

– Hiển thị kết quả thể hiện dạng phân số, căn thức

– Có thể xem lại các bước trước đó để chỉnh sử và thực hiện lại

(Máy tính các nhân được Bộ GD&ĐT cho phép mang vào phòng thi)

Hàng Mới 100%. Miễn phí giao hàng trong nội thành Hà Nội.

Đặt hàng qua điện thoại:(04) 3733.4733 – (04) 3733.7973

(04) 3747.1575-098.990.2222 – 098.648.3333 –097.649.5555

Máy tính cá nhân cho học sinh Vinacal 570ES PLUS II (417 chức năng)

Máy tính cá nhân cho học sinh CASIO FX 570ES Plus

Mô tả sản phẩm:

Lọai máy tính khoa học thuộc thế hệ mới nhất, dùng cho học sinh phổ thông, được đem vào phòng thi. Tốc độ giải nhanh, cho kết quả đọc dễ dàng.

Rất tiện dụng khi đem vào phòng thi.

Máy tính cá nhân cho học sinh CASIO FX 570ES Plus

Máy tính cá nhân cho học sinh CASIO FX – 570VN PLUS new – được phép mang vào phòng thi

Giá thị trường: 550.000 VND

Mô tả sản phẩm:

– Tính toán số thập phân vô hạn tuần hoàn`

– Phân tích thành thừa số nguyên tố

– Tìm thương và số dư của phép chia

– Tìm ƯCLN, BCNN

– Tìm tọa độ đỉnh Parabol trực tiếp trên máy

– Giải bất phương trình bậc 2, bậc 3

– Tính tích, tổng của dãy số

– Lưu nghiệm khi giải phương trình

– Hiển thị kết quả dưới dạng hỗn số, số thập phân, căn thức

– Tính logarit với cơ số bất kỳ

– Tính toán phân phối DIST

– Tính ma trận, thống kê

Máy tính cá nhân cho học sinh CASIO FX – 570VN PLUS new – được phép mang vào phòng thi

Máy tính cá nhân cho học sinh CASIO FX – 580VN X – Thế hệ mới

Giá thị trường: 800.000 VND

Mô tả sản phẩm:

Máy tính CASIO FX-580VN X là sản phẩm thuộc dòng máy ClassWiz sở hữu màn hình có độ phân giải cao vượt trội, giúp người dùng có thể dễ dàng xem các công thức và biểu tượng toán học một cách đơn giản.

Độ phân giải của màn hình của FX-580VN X được tăng gấp 4 lần, hỗ trợ tăng lượng thông tin hiển thị cũng như cải thiện tính tiện dụng của sản phẩm.

Máy có thể hiển thị số lượng ký tự gấp 2 lần ở kích thước bình thường và 6 lần ở kích thước nhỏ trên màn hình so với những dòng máy ES Plus trước đó.

– Máy tính CASIO FX 580vnx được phép mang vào phòng thi– Giải được hệ phương trình 4 ẩn– Giải được bất phương trình 4 ẩn– Giải được phương trình bậc 4– 4 biến vecto

Kiểm tra số nguyên tố có 4 chữ số

Lưu phần thương và phần dư trong phép chia,

Tính năng kiểm tra đúng/sai

Thông báo vô nghiệm khi giải phương trình bậc hai, Cực trị của hàm số bậc ba

Giải hệ phương trình 4 ẩn

Giải phương trình bậc 4

Giải bất phương trình bậc 4

Tốc độ xử lí vượt trội….

Màn hình LCD độ phân giải cao giúp người dùng có thể dễ dàng nhìn thấy các hiển thị trên màn hình trong mọi điều kiện ánh sáng, kể cả trong phòng tối hoặc ngoài trời nắng.

Màn hình LCD tốn ít dung lượng pin và ít ảnh hưởng đến sức khỏe của người dùng, tối ưu cho góc xem thẳng phía trên. Ngoài ra, màn hình cũng tạo được hiệu ứng mờ, hạn chế tình trạng mỏi mắt khi sử dụng.

Chiếc máy tính CASIO FX 580VNX rất thân thiện, dễ sử dụng; người dùng có thể tận dụng đầy đủ các tính năng hiển thị với giao diện dễ dùng cùng thiết kế kiểu dáng hiện đại, tiên tiến.

CASIO FX-580VN X là màn hình LCD có độ phân giải cao với giao diện máy dễ sử dụng. Tất cả các ký hiểu, biểu tượng sẽ được hiển thị rõ ràng trên màn hình máy tính. Bằng việc sử dụng biểu tượng trên màn hình menu, người dùng có thể dễ dàng lựa chọn những chức năng mình mong muốn một cách nhanh chóng.

Ngoài ra, hầu các từ tiếng Anh xuất hiện trên màn hình chiếc máy FX 580VN X đều ở dạng đầy đủ chứ không viết tắt nên rất dễ hiểu, giúp nâng cao khả năng ngoại ngữ khi sử dụng máy. Màn hình menu cũng tương tác hỗ trợ nhiều các thao tác trực quan hơn những dòng máy trước.

Hàng Mới 100%. Chính hãng. Miễn phí giao hàng trong nội thành Hà Nội

Đặt hàng qua điện thoại: (024) 3733.4733 – (024) 3733.7973

(024) 3747.1575 – 098.990.2222 – 098.648.3333 – 097.649.5555

Máy tính cá nhân cho học sinh CASIO FX – 580VN X – Thế hệ mới

Máy tính cá nhân cho học sinh CASIO FX – 570VN PLUS – được phép mang vào phòng thi

Giá thị trường: 500.000 VND

Mô tả sản phẩm:

Tính toán số thập phân vô hạn tuần hoàn`

– Phân tích thành thừa số nguyên tố

– Tìm thương và số dư của phép chia

– Tìm ƯCLN, BCNN

– Tìm tọa độ đỉnh Parabol trực tiếp trên máy

– Giải bất phương trình bậc 2, bậc 3

– Tính tích, tổng của dãy số

– Lưu nghiệm khi giải phương trình

– Hiển thị kết quả dưới dạng hỗn số, số thập phân, căn thức

– Tính logarit với cơ số bất kỳ

– Tính toán phân phối DIST

– Tính ma trận, thống kê

Máy tính cá nhân cho học sinh CASIO FX – 570VN PLUS – được phép mang vào phòng thi

Máy tính cá nhân cho học sinh CASIO FX 570MS

Giá thị trường: 450.000 VND

Mô tả sản phẩm:

Máy tính Casio FX-570MS

Hiển thị :10 số

Máy tính phổ thông

Được Bộ GD&ĐT cho phép mang vào phòng thi

Máy tính cá nhân cho học sinh CASIO FX 570MS

Máy tính cá nhân cho học sinh CASIO FX-500 VN Plus

Mô tả sản phẩm:

Model : FX-500VN PLUS FX-500VN PLUS

Đưa biểu thức vào được như được viết trong sách giáo khoa , ngoài ra Máy FX 500VN PLUS còn có thêm chức năng mới như:– Máy FX 500VN PLUS có đầy đủ tính năng của máy Fx -500 ES 1. Tính toán số thập phân tuần hoàn Chuyển từ số thập phân tuần hoàn sang số và ngược lại2. Nghiệm của phương trình và bất phương trình hiển thị dạng 3. Phương trình bậc 2 và bậc 3 4. Hàm RanInt#(a,b) 5. Tính tỷ số (RATIO ) 6. Số biến nhớ là 8 biến (FX-500 ES chỉ có 6 biến)

Máy tính cá nhân cho học sinh CASIO FX-500 VN Plus

Máy tính cá nhân cho học sinh Casio FX-95ES PLUS

Mô tả sản phẩm:

Lọai máy tính khoa học thuộc thế hệ mới nhất, dùng cho học sinh phổ thông. Không thẻ nhớ, không chức năng soạn thảođược đem vào phòng thi. Tốc độ giải nhanh,cho kết quả đọc dễ dàng . Rất tiện dụng khi đem vào phòng thi….

Được Bộ GD&ĐT cho phép mang vào phòng thi

Máy tính cá nhân cho học sinh Casio FX-95ES PLUS

Địa chỉ mua hàng trực tiếp: 47 Lý Nam Đế – Hoàn Kiếm – Hà Nội ( Xem bản đồ)