Top 7 # Xem Nhiều Nhất Cách Giải Bất Đẳng Thức Mới Nhất 3/2023 # Top Like | Techcombanktower.com

Bất Đẳng Thức Cosi Và Cách Sử Dụng Bất Đẳng Thức Cosi

Posted by itqnu

Ngay từ bậc Tiểu học, chúng ta đã được làm quen với trung bình cộng và trung bình nhân rồi phải không nào? Và khi càng học cao hơn, chúng ta sẽ nhận thấy các bất đẳng thức còn được sử dụng với nhiều dạng khác nhau.

Trong đó được sử dụng nhiều nhất có lẽ chính là bất đằng thức Cosi. Vậy bất đẳng thức Cosi được định nghĩa như thế nào? Làm thế nào để chứng minh được bất đẳng thức Cosi? Có những kỹ thuật nào sử dụng bất đẳng thức Cosi để chứng minh các bất đẳng thức khác hay không?…

Khái niệm bất đẳng thức Cosi

Trong toán học, bất đẳng thức Cosi là bất đẳng thức so sánh giữa trung bình cộng và trung bình nhân của n số thực không âm được phát biểu như sau:

Trung bình cộng của n số thực không âm luôn lớn hơn hoặc bằng trung bình nhân của chúng. Và trung bình cộng chỉ bằng trung bình nhân khi và chỉ khi n số đó bằng nhau.

Bất đẳng thức Cosi cho 2 số không âm

Bất đẳng thức Cosi cho 3 số không âm

Bất đẳng thức Cosi cho 4 số không âm

Chứng minh bất đẳng thức Cosi

1. Chứng minh bất đẳng thức Cosi với 2 số thực a, b không âm

Ta thấy với a = 0 hoặc b = 0 thì bất đẳng thức luôn đúng. Vì vậy, chúng ta chỉ chứng minh bất đẳng thức Cosi với 2 số dương mà thôi.

Bất đẳng thức đã cho luôn đúng với ∀ a, b dương (đpcm)

2. Chứng minh bất đẳng thức cosi với 3 số thực a, b, c không âm

Với a = 0 hoặc b = 0 hoặc c = 0 thì bất đẳng thức luon đúng. Vì thế, chúng ta chỉ chứng minh bất đẳng thức cosi với 3 số dương mà thôi.

3. Chứng minh bất đẳng thức Cosi với 4 số thực a, b, c, d không âm

Với a = 0 hoặc b = 0 hoặc c = 0 hoặc d = 0 thì bất đẳng thức luôn đúng. Vì thế chúng ta cũng chỉ chứng minh bất đẳng thức cosi với 4 số dương mà thôi.

Ta được bất đẳng thức cosi cho 3 số dương.

4. Chứng minh bất đẳng thức Cosi với n số thực không âm

Chứng minh bất đẳng thức Cosi với n số dương

n=2 thì bất đẳng thức đúng.

Nếu bất đẳng thức đúng với n số thì nó cũng đúng với 2n số.

Theo quy nạp thì bất đẳng thức đúng với n là một lũy thừa của 2.

Mặt khác giả sử bất đẳng thức đúng với n số thì ta cũng chứng minh được nó đúng với n – 1 số như sau:

Đây chính là bất đẳng thức cosi (n-1) số. Như vậy ta có đpcm.

Những quy tắc chung trong chứng minh bất đẳng thức sử dụng bất đẳng thức cosi

Quy tắc song hành: hầu hết các bất đẳng thức đều có tính đối xứng, do đó, việc sử dụng các chứng minh một cách song hành sẽ giúp ta dễ hình dung ra kết quả hơn, cũng như định hướng cách giải nhanh hơn

Quy tắc dấu bằng: dấu “=” trong bất đẳng thức rất quan trọng. Nó giúp ta kiểm tra tính đúng đắn của chứng minh. Nó định hướng cho ta phương pháp giải, dựa vào điểm rơi của bất đẳng thức. Do đó, bạn phải rèn luyện cho mình thói quen tìm điều kiện xảy ra dấu “=”

Quy tắc về tính đồng thời của dấu bằng: một nguyên tắc khi áp dụng song hành các bất đẳng thức đó là điểm rơi phải được đồng thời xảy ra, nghĩa là các dấu “=” phải được dùng thỏa mãn cùng với một điều kiện của biến

Quy tắc biên: cơ sở của quy tắc biên này là các bài toán quy hoạch tuyến tính, các bài toán tối ưu, các bài toán cực trị có điều kiện ràng buộc, giá trị lớn nhất nhỏ nhất của hàm nhiều biến trên một miền đóng. Ta biết rằng các giá trị lớn nhất, nhỏ nhất thường xảy ra ở các vị trí biên và các đỉnh nằm trên biên

Quy tắc đối xứng: các bất đẳng thức thường có tính đối xứng vậy thì vai trò của các biến trong BĐT là như nhau do đó dấu “=” thường xảy ra tại vị trí các biến đó bằng nhau. Nếu bài toán có gắn hệ điều kiện đối xứng thì ta có thể chỉ ra dấu “=” xảy ra khi các biến bằng nhau và mang một giá trị cụ thể. Chiều của BĐT : “≥”, “≤” cũng sẽ giúp ta định hướng được cách chứng minh: đánh giá từ TBC sang TBN và ngược lại

Ví dụ sử dụng bất đẳng thức Cosi để chứng minh bất đẳng thức khác

Ví dụ 1: Cho hai số thực không âm a, b. Chứng minh (a + b)(1 + ab) ≥ 4ab.

Giải: Áp dụng bất đẳng thức Cosi cho 2 số thực không âm ta có:

Giải: Áp dụng bất đẳng thức Cosi cho 2 số thực không âm ta có:

Chuyên Đề Đẳng Thức Và Bất Đẳng Thức

Published on

1. CHUYÊN ĐỀ BỒI DƯỠNG NĂNG LỰC GIẢI TOÁN VỀ ĐẲNG THỨC VÀ BẤT ĐẲNGTHỨC CHO HỌC SINH GIỎI LỚP 9 THCS 1

6. (x + 1)(x + 3)(x + 5)(x + 7) + 15 = 0. Gặp những bài toán này HS có thể qui về phương pháp quen thuộc ở bài P    Để làm được bài toán này, HS phải quen với cách viết: 99…9 10n 1 1 1 1 … 1 1 2 2 3 3 4 1 1 1 1 … 1 1 2 3 2 3 4 3 4 5 1 2 1 1 1 … 1 6 toán ban đầu. Ví dụ: Tính giá trị của biểu thức 1 99…92 0,99…92 n n n   . Ta có: 99…92 (10n 1)2    và n 2 n n 0,99…92 10 1 10 n          . Khi đó đặt: a = 10n  1 thì 2   2 2 1 1 P a a a     bài toán quen thuộc. 1  12 2  12 2 1 P  a   a a   a a     a 2 a  2 2 1 1 1 1 1 P a a       a a   Bài toán có thể lạ về nội dung; giả thiết, kết luận; hoặc là về phương pháp làm (phương pháp đặc biệt). Song trong mỗi bài đều có thể tìm ra một vài ý quen thuộc. Bởi vậy việc rèn luyện trí nhớ cũng rất cần đối với HS. Năng lực 7: Năng lực khái quát hoá, đặc biệt hoá, tương tự. Ví dụ: Tính các tổng sau: 2   S n n          (nN, n≥1) Từ bài toán này chúng ta có thể mở rộng và được hai bài toán tính tổng sau: 3     S n n n               , (nN, n≥1) 4 1 2 3 4 2 3 4 5 3 4 5 6  1   2   3  S n n n n                    , (nN, n≥1) Đồng thời có thể tổng quát hoá bài toán: Tính tổng:

11. Phương pháp 10: Phương pháp qui nạp toán học. Phương pháp 11: Phương pháp dùng toạ độ, hình học. Chương II BỒI DƯỠNG NĂNG LỰC GIẢI TOÁN VỀ ĐẲNG THỨC VÀ BẤT ĐẲNGTHỨC CHO HỌC SINH GIỎI LỚP 9 THCS 2.1. Các yêu cầu về kiến thức và kỹ năng đối với toán ĐT và BĐT thuộc chương trình toán lớp 9 THCS 2.1.1. HS cần nắm vững kiến thức về giải toán ĐT và BĐT – Nắm vững khái niệm và tính chất của ĐT và BĐT. – Nắm vững các HĐT đáng nhớ. – Nắm vững các phép biến đổi đơn giản của căn thức, phân thức, đa thức. – Nắm vững cách chứng minh ĐT. – Nắm vững cách chứng minh ĐT có điều kiện. – Nắm vững các phương pháp phân tích đa thức thành nhân tử. – Rút gọn, tính giá trị của một biểu thức. – Các phương pháp chứng minh BĐT (đã nêu ở chương 1). 2.1.2. HS có kỹ năng vận dụng các kiến thức vào giải toán – Kỹ năng vận dụng các HĐT đáng nhớ. – Kỹ năng tính toán giá trị của biểu thức. – Kỹ năng rút gọn một biểu thức. – Kỹ năng chứng minh ĐT. – Kỹ năng chứng minh ĐT có điều kiện. – Kỹ năng phân tích đa thức thành nhân tử. – Kỹ năng chứng minh BĐT. 2.1.3. HS phát triển về những năng lực trí tuệ chung. – Năng lực suy luận, lập luận. – Năng lực phân tích, tổng hợp, so sánh, trừu tượng hóa, khái quát hoá, xét 11 tương tự, đặc biệt…

13. Để chứng minh các ĐT đại số, thường sử dụng các HĐT quen thuộc (đáng by ay bx a x b y axby a y b x axby ax  )  (  )  (   2 )  (   2 ) a x b y a y b x a b x y 13 nhớ) sau: 1. (a + b)2 = a2 + b2 + 2ab. ( a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca). 2. (a  b)2 = a2 + b2  2ab. 3. (a + b)3 = a3 + b3 + 3ab(a + b). ( a + b + c)3 = a3 + b3 + c3 + 3( a + b)( b + c)( c + a). 4. (a  b)3 = a3  b3  3ab(a  b). 5. a2  b2 = (a + b)(a  b). 6. a3 + b3 = (a + b)( a2  ab + b2). =(a + b)3  3ab(a + b). 7. a3  b3 = (a  b)( a2 + ab + b2). =(a  b)3 + 3ab(a  b). Một cách tổng quát: 8. a2n + 1 + b2n + 1 = (a + b)( a2n  a2n  1.b + … + b2n) 9. an  bn = (a  b)( an1 + an2.b + … + bn1). 2. Rèn luyện các kỹ năng giải bài toán về ĐT Dạng 1: Bài tập về chứng minh ĐT Bài 1: CMR: (a2 + b2)(x2 +y2) = (a x + by)2 + (ay – bx)2 Giải: Biến đổi vế phải, ta được:  2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2) ( )( )        ĐT được chứng minh. Bài 2: CMR: (x+y)(x+y)3 = x(x + 2y)3 – y(2x + y)3 Hướng dẫn: Biến đổi vế phải, ta được điều cần chứng minh. (Tương tự bài 1) Bài 3: CMR: x4 + y4 + (x + y)4 = 2(x2 + xy + y2)2 Giải: Viết ĐT đã cho dưới dạng: 2(x2 + xy + y2)2  x4  y4 =(x + y)4 Biến đổi vế trái, ta được:

14. 2(x2 + xy + y2)2  x4  y4 = [(x2 + xy + y2)2 x4] + [(x2 + xy + y2)  y4] = (xy + y2)(2×2 + xy + y2) + (x2 + xy)(x2 + xy + 2y2) = (x + y) [y(2×2 + xy + y2) + x(x2 + xy + 2y2)] = (x + y) [x3 + 3x2y + 3y2x + y3] = (x + y)(x + y)3 = (x + y)4. Vậy ĐT được chứng minh. Bài 4: Cho a, b, c. CMR: a3 + b3 + c3  3abc = (a + b + c)( a2 + b2 + c2  ab  bc  ca) Giải: Biến đổi vế trái, ta được: a3+b3+c33abc = (a3+b3)+ c3 3abc = (a + b)3  3ab(a + b) + c33abc = [(a + b)3 + c3]  3ab(a + b + c) = (a + b + c)3 3(a + b).c(a + b + c)  3ab(a + b + c) = (a + b + c)[(a + b + c)2 3ac  3bc  3ab] = (a + b + c)(a2 + b2 + c2  ab  bc  ca) Vậy ĐT được chứng minh. Bài 5: Chứng minh rằng, nếu ít nhất có hai trong ba số a, b,c khác nhau thì: 3 3 3 a b c a  b  c  abc   ( ) ( ) ( ) 2 a b c a  b 2  b  c 2  c  a 2 a b c a b b c c a 2 2 2 [(  )  (  )  (  ) ] 14 3 2 2 2 a b b c c a       Hướng dẫn: Biến đổi tử số của phân thức ở vế trái như bài 4, ta được: a3+ b3+ c3  3abc = (a + b + c)(a2 + b2 + c2  ab  bc  ca) [( ) ( ) ( ) ]   2  Vậy vế trái của ĐT đã cho bằng: ( ) ( ) ( ) 2 2 2 2 2 a b c a b b c c a           ĐT được chứng minh. Bài 6: CMR: a/ 4 49  20 6  4 49  20 6  2 3 Hướng dẫn:

16. a a 2 2(3  2 )(1  ) x x2 y x x2 y x x2 y x x2 y x  x2  y x  x2  y x x2 y x x2 y x  x2  y x  x2  y   =   x x2 y x x2 y x x2 4 2 4 2  4 16 Vậy ĐT được chứng minh. b/ CMR: 5  1 3  2 5 5 1 3 2 5 4 4 4    4 4 Giải: Đặt 4 5  a  5  a4 Cần chứng minh: a a a a 3  2 3 2 1 4 1         Khai triển: a a a a 4 4 a ( 1) a a a 3  2 3 2 2(3 2 )(1 )  ( 1) 1 1 2 4              Vậy ĐT được chứng minh. Bài 8: Chứng minh các ĐT sau: a) 2 2 x y        Hướng dẫn: Bình phương 2 vế của ĐT đã cho, ta được: x  y     4 2 2 2       Biến đổi vế phải, ta được:    4 2 2 2     x 2 y x  y 4 Vậy ĐT được chứng minh. b) 2 2 x y        (Chứng minh tương tự a/) c) x x x x x x       Hướng dẫn: Nhân 2 vế với 4 x , ta được:

19.   2 2 2 c a c b a b b c c a ( )( ) ( )( ) ( )( )  1 1 1 1  1 1 1 1  1 1 1 1 ab ; b)  19 a b c  a b c b a b c a b a c               Hướng dẫn: Ta có: a  c  a  b a b a c a b a c a b c a b c a b a c         ( )( ) (  )(  )    b  a  b  c b c b a b c b a b c a b c a b c b a         ( )( ) (  )(  )    c  b  c  a c a c b c a c b c a b c a b c a c b         ( )( ) (  )(  )    Cộng từng vế của ba ĐT trên ta được điều cần chứng minh. * Nhận xét: – Để chứng minh một ĐT ta có thể thực hiện việc biến đổi biểu thức (thực hiện phép tính) ở vế này (thường là vế phức tạp hơn) của ĐT để được một biểu thức ở vế kia. – Trong một số trường hợp, để chứng minh một ĐT ta có thể biến đổi đồng thời cả hai vế của ĐT sao cho chúng cùng bằng một biểu thức thứ ba, hoặc cũng có thể lấy biểu thức VT trừ biểu thức VP (hoặc biểu thức VP trừ biểu thức VT) và biến đổi có kết quả bằng 0. Dạng 2: Chứng minh ĐT có điều kiện. Bài 13: Cho a + b + c = 0. CMR: a3 + b3 + c3 = 3abc. Giải: Ta có (a + b + c)3 = a3 + b3 + c3 + 3(a + b)(b + c)(c + a) (1) Vì a + b + c = 0, nên suy ra: a + b = c; b + c = a; c + a = b Từ đó theo (1) ta có: 0 = a3 + b3 + c3  3abc Suy ra: a3 + b3 + c3 = 3abc. Vậy ĐT được chứng minh. Bài 14: Cho a + b = 1, ab≠ 0. CMR: a/ a  b  2(  2) a b   2( b a ) b3 1 a3 1 a 2 b 2  3 b3 1 a3 1 a 2 b 2  3 Giải:

27. b/ N = a(b2  c2) + b(c2  a2) + c(a2  b2) (Tương tự phần a) = a(b2  c2)  b(a2  c2) + c(a2  b2) = a(b2  c2)  b[(a2  b2) + (b2  c2)] + c(a2  b2) = a(b2  c2)  b(a2  b2 )  b(b2  c2) + c(a2  b2) = (b2  c2)(a  b)  (a2  b2)(b  c) = (b  c)(b + c)(a  b)  (a  b)(a + b)(b  c) = (a  b)(b c) [(b+ c)  (a + b) ] = (ab)(b  c)(b + c  a  b) = (a  b)(b  c)(c  a) 27 Bài 37: A = x4 + x3 + x2  x  2 = x4 + x3 + 2×2  x2  x  2 = x2(x2 + x + 2)  (x2 + x + 2) = (x2 1)(x2 + x + 2) = (x 1)(x +1)(x2 + x + 2) Bài 38: a/ f(x) = x3  x  6 = x3  2×2 + 2×2  4x + 3x  6 = x2(x  2) + 2x(x  2) + 3(x  2) = (x  2) (x2 + 2x + 3) b/ f(x) = x5 + x +1 = x2(x3  1) + (x2 + x + 1) = x2(x  1)(x2 + x + 1) + (x2 + x + 1) = (x2 + x + 1)(x3  x +1) Bài 39: a/ A = 2×3 + x2 + x  1 = (x3  1) + (x3 + x2 + x) = (x  1)(x2 + x + 1) + x(x2 + x + 1) = (x2 + x + 1)(2x  1) b/ B = 3×3 + 2×2 +2x  1 = (x3  1) + (2×3 + 2×2 + 2x)

28. = (x  1) (x2 + x + 1) + 2x(x2 + x + 1) = (x2 + x + 1) (3x  1) 28 Bài 40: a/ A = 6×2  5x + 1 = 6×2  3x  2x + 1 = 3x(2x  1)  (2x  1) = (2x  1)(3x  1) b/ A = 2×2  5xy + 2y2 (Tương tự a/) Bài 41: a/ A = 4×2  4x  3 = 4×2  4x + 1  4 = (2x  1)2  22 = (2x  1 + 2) (2x  1  2) = (2x + 1) (2x  3) b/ C = 4×2  11x + 6 = 4×2  8x  3x + 6 = 4x(x  2)  3(x  2) = (4x  3)(x  2) Bài 42: a/ A = x4 + 5×2 + 9 = x4 + 6×2 + 9  x2 = (x2 + 3)2  x2 = (x2 + 3  x) ( x2 + 3 + x) b/ B = x4 + x2y2 + y4 = x4 + 2x2y2 + y4  x2y2 = (x2 + y2)2  (xy)2 = (x2 + y2  xy)(x2 + y2 + xy) c/ C = x4 + 3×2 + 4 (Tương tự phần b) Bài 43: a/ C = 4×4 + 1 = (2×2)2 + 4 x2 + 1 4×2 = (2 x2 + 1)2  (2×2) = (2 x2  2x + 1)(2 x2 + 2x + 1) b/ D = 64×4 + 81 (Tương tự a/ ) Bài 44:

29. a/ A = (x2  4x)2 + 8(x2  4x) + 15 = (x2  4x)2 + 2. 4(x2  4x) + 16  1 = (x2  4x + 4)2  1= (x2  4x + 4 + 1) (x2  4x + 4  1) = (x2  4x + 5) (x2  4x + 3) = (x2  4x + 5) (x  3) (x  1) 29 b/ B = x2 + 2xy + y2 + 2x + 2y  3 = (x + y)2 + 2(x + y)  3 = (x + y +1)2  22 = (x + y + 3) (x + y 1) Bài 45: A = a2b + a2c + ab2 + ac2 + cb2 + c2b + 2abc = ab(a + b)+ c2(a + b) + c(a2 + b2 + 2ab) = ab(a + b)+ c2(a + b) + c(a + b)2 = (a + b)(ab + c2 + ca + cb) = (a + b)[(a(b + c) + c(b + c)] = (a + b)(b + c) (a + c) Bài 46: P = a2(b  c) + b2(c  a) + c2(a  b) = a2(b  c) + c2(a  b)  b2(a  c) = a2(b  c) + c2(a  b)  b2[(a  b) + (b  c)] = a2(b  c) +c2(a  b)  b2(a  b)  b2(b  c) = (a2  b2)(b  c)+ (a b)(c2b2) = (ab)(bc )[ a + b  c  b] = (a  b)( b  c )(a  c ) Bài 47: Q = a3 + 4a2  29a + 24 = a3  a2 + 5a2  5a  24a + 24 = a2(a 1) + 5a(a 1)  24(a  1) = (a  1)( a2 + 5a  24) = ( a 1)( a2  3a + 8a  24) = (a  1)(a  3)(a + 8). Bài 48: a/ A = x4 + 6×3 + 7×2  6x + 1 = x4 + 6×3 + 9×2  2×2  6x + 1 = x2(x + 3)2  2x(x + 3) + 1 = (x2 + 3x  1)2 b/ B = x3 + 6×2 + 11x + 6 = x3 + x2 + 5×2 + 5x + 6x + 6

31. * Nhận xét: Phân tích đa thức thành nhân tử là biến đổi một đa thức thành một tích của các đa thức khác có bậc khác không. Ta cũng lưu ý rằng luỹ thừa của một đa thức với số mũ luỹ thừa lớn hơn 1 là một tích các đa thức với các nhân tử bằng nhau.. Có nhiều phương pháp phân tích đa thức thành nhân tử: Phương pháp 1: Phương pháp đặt nhân tử chung. Làm xuất hiện nhân tử giống nhau ở các hạng tử của đa thức. Đặt nhân tử    M a a a    ab  b a  a  ab  b    a   31 chung đó ra ngoài ngoặc. Phương pháp 2: Dùng HĐT. Biến đổi đa thức cần phân tích về dạng một vế của HĐT quen thuộc. Phương pháp 3: Phương pháp nhóm các hạng tử. Sử dụng tính chất kết hợp của phép cộng ta nhóm các hạng tử của đa thức cần phân tích một cách hợp lý để có thể sử dụng phương pháp đặt nhân tử chung hoặc phương pháp dùng HĐT. Phương pháp 4: Phương pháp tách một hạng tử thành một tổng. Tách một hạng tử của đa thức thành một tổng để có thể sử dụng phương pháp nhóm các hạng tử cho đa thức mới nhận được. Phương pháp 5: Phương pháp thêm bớt cùng một hạng tử. Ngoài các phương pháp phân tích đa thức thành nhân tử ở trên còn một số phương pháp khác như phương pháp hệ số bất định, phương pháp đặt biến phụ … Khi làm loại toán trên, HS hãy tìm các cách giải khác nhau và hãy chọn cách làm ngắn gọn nhất. Trong các phương pháp trên thì thường ưu tiên số một là dùng cách đặt nhân tử chung, rồi đến dùng HĐT và sau đó là nhóm các hạng tử, v.v… Căn cứ vào từng bài, hãy làm thử rồi chọn cách phân tích; thông thường trong quá trình giải mỗi bài toán phân tích đa thức thành nhân tử cũng vẫn phải phối hợp, vận dụng linh hoạt các phương pháp trên. Dạng 4: Rút gọn biểu thức: Bài 51: Rút gọn biểu thức: a) 2 2 2 2 . 1 3 2 2 2 3

35. 2 x x 1 1 2 2 2 2 x x x x ( 1 1) ( 1 1) 2 2 2 2 2 2 2 2 x x x x x x x x (  1)  2(  1)  1  (  1)  (  1)  2(  1)  1  (  1) 2 2 2 2 2 1 2 1 1 2 x  x  x   x  x   x  2 a x 2 2 c x 2 bc a x 2 b c ac b  x 2 c  a 2 2 2 2 bc a  x b  c  ac b  x c  a  ab c  x a  b 35 c)    1 1 2 P x x 1 1    1 1 2 2         x x x x       2 2 2 (  1)  (  1)  x x 2 2 2 (  1)  (  1)  x x     x  x   x x  x x 2 2 2 x 2 2 x x x 2  1 1  2 1 2 1 1           ĐK: x < 1 hoặc x≥ 1 Bài 55: Đơn giản biểu thức: A  (2 1)(22 1)(24 1)(28 1)(216 1)(232 1)  (2 1)(2 1)(22 1)(24 1)(28 1)(216 1)(232 1)  (22 1)(22 1)(24 1)(28 1)(216 1)(232 1)  (24 1)(24 1)(28 1)(216 1)(232 1)  (28 1)(28 1)(264 1)(232 1)  (216 1)(216 1)(232 1)  (232 1)(232 1)  264 1 Bài 56: Đơn giản biểu thức:            c x  ca cb c b  x b a b c b  Q a x a b a c a           2 2 2 TXĐ: abc  0; a  b  c                       b  x         c c a b c b a b b c a a b c a                            ab c  x a  b                abc a b b c c a abc a b b c c a abc a b b c c a                  (*)         abc a b b c c a  Phân tích tử thức (*) ta có: bca  x2 b  c acb  x2 c  a abc  x2 a  b  bc(a  x)2 (b  c)  ac(b  x)2 (b  c)  ac(b  x)2 (a b)  abc  x2 a b

37.       n n n n n n n n S          x x x x x2 x x 37 = …= 1 a a 3   4 2   a a 3 4 3 2 Bài 58: Rút gọn: 1 1 … 1 S     2 1  1 2 3 2  2 3 2011 2010  2010 2011 Giải: * Ta có n  1,n  Z  n n 1 1 1 1 (  1)  .  1 (  1)  1 * Thay n = 1, 2, …, 2010 vào,ta được: 1    1 1 2 2 1 1 2 1 3 1  1   2 3 2 2 3 … 1 1 1   2010 2009 2009 2010 2009 2010  1 1 1   2011 2010  2010 2011 2010 2011 Do đó 1 1 1 1 … 1 1 1 1 2 2 3 2010 2011 2011  Bài 59: Rút gọn: a) A =      2 1 2 1        1 . 1 1 4( 1)  1 2    Giải: Điều kiện  2 x x A =     x . 2 2 2 x x 1 1 1 1         1 2 2   x x = x . 2 1 x x 1 1 1 1      2    x x

40.  x  =1 x  x x x x . . . 1 1                    1 1 1 1         a b a b a b a b                        a  b a  ab  b  ab a  b a  b   a b 40      x x 1     = 1   x x 1 = 1  x x   1 1 x  x  . Vậy P = 1 1 x  x  . Bài 62: Cho 3 3 2 2 1 1 Q a b ab : a b a b a b a) Tìm điều kiện của a, b để Q có nghĩa. b) Rút gọn Q. Giải: a/ Tìm điều kiện của a, b để Q có nghĩa: Ta thấy a  b  0 a  b  a  b . 1 2 1 2 ( ) ( ) ( )( ) 1 1 0 1 1  1 1 2 2 1 1               a b a b a b a b 1 1 0 a 0,b 0 a b       . Vậy với a ≠ 0, b ≠ 0, a ≠ b thì Q có nghĩa. b/ Rút gọn Q: 3 3 2 2 Ta có 1 1 Q a b ab : a b a b a b        1 2 1 2 1 1   : ( ) ( )   a b a b     = (a + b): (a1 + b1) = (a + b):   1 1 = (a + b): a  b ab = ab. Vậy Q = ab Bài 63: Rút gọn biểu thức: a) A = x  x2  4  x  x2  4 với x ≥ 2 b) B = 2x  12x  9  2x  12x  9 với x ≥ 3 2 Giải: a/ A = x  x2  4  x  x2  4 Với x 2 .

Chứng Minh Bất Đẳng Thức Cauchy

Bất đẳng thức Cauchy-Schwarz còn gọi là bất đẳng thức Cauchy-Bunyakovsky-Schwarz (BĐT CBS – viết tắt của tên 3 nhà toán học này; ở Việt Nam nhiều người quen dùng với cái tên Bunhiacopxki) được dùng nhiều trong toán học sơ cấp. Với tư cách là hai hòn đá tảng để nhiều kết luận quan trọng khác của toán học dựa vào, cặp bất đẳng thức AM-GM, Cauchy-Schwarz được sử dụng khá phổ biến ở phần lớn các bài toán chứng minh bất đẳng thức. Ngoài ra một số hệ quả của cặp bất đẳng thức này có thể vận dụng để giải hàng loạt các bài toán thú vị về cực đại và cực tiểu.

Bất đẳng thức CBS (Cauchy – Bunyakovsky – Schwartz)

Chứng minh bất đẳng thức CBS

Hiện nay bất đẳng thức Cauchy-Schwarz cũng có khá nhiều cách chứng khác nhau, tất cả các cách chứng minh đó đều ngắn gọn đặc sắc, xin giới thiệu một cách chứng minh trong số những cách chứng minh đã có như sau.

Hệ quả của bất đẳng thức CBS

Từ bất đẳng thức Cauchy-Schwarz suy ra hai hệ quả để sử dụng trong bài viết này:

Làm chặt bất đẳng thức CBS

Bây giờ ta sử dụng 2 hệ quả trên để làm chặt bất đẳng thức Cauchy-Schwarz.

Theo Ngô Văn Thái (Epsilon). Người đăng: Sơn Phan.

còn gọi là bất đẳng thức(BĐT CBS – viết tắt của tên 3 nhà toán học này; ở Việt Nam nhiều người quen dùng với cái tên) được dùng nhiều trong toán học sơ cấp. Với tư cách là hai hòn đá tảng để nhiều kết luận quan trọng khác của toán học dựa vào, cặp bất đẳng thức AM-GM, Cauchy-Schwarz được sử dụng khá phổ biến ở phần lớn các bài toán chứng minh bất đẳng thức. Ngoài ra một số hệ quả của cặp bất đẳng thức này có thể vận dụng để giải hàng loạt các bài toán thú vị về cực đại và cực tiểu.Hiện nay bất đẳng thức Cauchy-Schwarz cũng có khá nhiều cách chứng khác nhau, tất cả các cách chứng minh đó đều ngắn gọn đặc sắc, xin giới thiệu một cách chứng minh trong số những cách chứng minh đã có như sau.Từ bất đẳng thức Cauchy-Schwarz suy ra hai hệ quả để sử dụng trong bài viết này:Bây giờ ta sử dụng 2 hệ quả trên để làm chặt bất đẳng thức Cauchy-Schwarz.

Cách Học Giỏi Bất Đẳng Thức Hay Nhất

Bất đẳng thức là một trong những mảng kiến thức khó và rộng của bộ môn toán nhưng nhờ các bài tập về bất đẳng thức mà học sinh có thể hiểu kỹ hơn, sâu hơn về giải và biện luận phương trình, bất phương trình, hệ phương trình, tìm giá trị lớn nhất, giá trị nhỏ nhất của một biểu thức toán học, mối liên hệ giữa các yếu tố trong tam giác cũng như nhiều ứng dụng trong khảo sát hàm số…. Dù kiến thức lý thuyết không nhiều, có thể nói là ít, nhưng bất đẳng thức là một dạng toán thiên biến vạn hóa, đòi hỏi học sinh phải có tư duy toán học tốt và nó cũng rèn giũa về tư duy logic và bồi dưỡng trí thông minh cho chúng ta khi nghiên cứu về dạng toán này. Thực tế khi giải các bài tập về bất đẳng thức học sinh thường gặp nhiều khó khăn, lúng túng vì cách giải chúng không hoàn toàn có một mẫu quy tắc nào như ở một số mảng kiến thức toán học khác. Vì vậy thông qua bài viết này, gia sư dạy kèm môn toán chúng tôi xin giới thiệu cho các bạn học sinh một số cách học giỏi bất đẳng thức để giúp các bạn học sinh xóa tan nổi sợ mang tên bất đẳng thức và chinh phục nó.

Cách học giỏi bất đăng thức

Những vấn đề các bạn học sinh hay gặp phải

– Học sinh thường sợ bất đẳng thức, thụ động, lúng túng trong cách biến đổi và tính toán

– Không nắm vững những bất đẳng thức quan trọng

– Không khai thác hết giả thiết

– Khi giải được bài toán rồi thì dừng lại, không tiếp tục tìm tòi khai thác, giải bài toán bằng nhiều cách khác nhau.

Thái độ học tập

Học thầy, học bạn

Phương pháp học giỏi bất đẳng thức

Nắm vững các kiến thức cơ bản

Để học tốt một môn học, những viên gạch đặt nền móng kiến thức là không thể thiếu. Học sinh phải học thuộc, hiểu và biết cách vận dụng các phép biến đổi toán học, các dạng bất đẳng thức cơ bản thường gặp và thường dùng (Bất đẳng thức giá trị tuyệt đối, Bất đẳng thức Cosi, Bất đẳng thức BunhiaCopski). Từ đó, học sinh mới có thể vận dụng tốt để giải các bài toán bất đẳng thức.

Phương pháp tìm cách giải bài toán bất phương trình

Sau khi tìm được cách giải, học sinh cần kiểm tra lại, tức là xem xét bài giải có sai lầm hay thiếu sót gì không.

Làm sao để học giỏi bất đẳng thức

Khuyến khích giải bài toán bằng nhiều cách

Sau khi tìm ra lời giải, ngoài việc kiểm tra lại bài giải, học sinh nên tìm tòi những cách giải khác, phân tích, khai thác sâu lời giải của bài toán, so sánh để chọn cách giải hợp lí nhất.

Học sinh cần lưu ý

– Bất đẳng thức là một chuyên đề khó, phức tạp và phong phú với nhiều phương pháp giải. Do đó, học sinh cần nghiên cứu và đầu tư nhiều thời gian.

– Để học sinh vận dụng tốt các phương pháp chứng minh bất đẳng thức ngoài việc nắm vững lý thuyết, học sinh phải nhớ dạng và phương pháp thích hợp thì khi giải các bài toán bất đẳng thức sẽ có nhiều hướng suy nghĩ nên dễ tìm ra cách giải, qua đó phát triển tư duy và nâng cao năng lực sáng tạo.

– Học thuộc lòng, hiểu các phương pháp chứng minh bất đẳng thức.

– Biết phối hợp với một số kiến thức khác.

– Kết hợp với biến đổi, tính toán, rút gọn.

Cách học giỏi bất đẳng thức hay nhất

Tư vấn tìm gia sư 24/7

Hotline hỗ trợ mọi vấn đề xung quanh việc học con em bạn .

Hỗ trợ giải đáp tư vấn tìm gia sư các môn học, các cấp học 24/7.

CÔNG TY TNHH TƯ VẤN VÀ PHÁT TRIỂN GIÁO DỤC VINA GIA SƯ là 1 trung tâm gia sư uy tín hàng đầu tại Việt Nam

Địa chỉ : 338/2A Tân Sơn Nhì , phường Tân Sơn Nhì , Quận Tân Phú, TP.Hồ Chí Minh

Điện thoại : 0903 108 883 – 0969 592 449

Email : info@vinagiasu.vn

Website : Vinagiasu.vn

@ Copyright 2010-2020 chúng tôi , all rights reserved

Loading…