Đề Xuất 5/2022 # Tìm Tọa Độ Hình Chiếu Vuông Góc Của Một Điểm Lên Một Mặt Phẳng # Top Like

Xem 10,197

Cập nhật nội dung chi tiết về Tìm Tọa Độ Hình Chiếu Vuông Góc Của Một Điểm Lên Một Mặt Phẳng mới nhất ngày 16/05/2022 trên website Techcombanktower.com. Hy vọng thông tin trong bài viết sẽ đáp ứng được nhu cầu ngoài mong đợi của bạn, chúng tôi sẽ làm việc thường xuyên để cập nhật nội dung mới nhằm giúp bạn nhận được thông tin nhanh chóng và chính xác nhất. Cho đến nay, bài viết này đã thu hút được 10,197 lượt xem.

--- Bài mới hơn ---

  • Cách Tìm Hình Chiếu Của Một Điểm Lên Đường Thẳng, Mặt Phẳng Cực Hay
  • Hình Chiếu Trong Toán Học Là Gì?
  • 1; Vẽ Hình Chiếu Đứng,bằng ,cạnh Của Một Vật Thể Cho Biết Vị Trí Hình Trên Bản Vẽ 2; Các Hình Nào Thuộc Khối Đa Diện 3; Nêu Sơ Đồ Về Bản Vẽ Chi Tiết,bản Vẽ Lắp
  • Giải Bài Tập Sgk Công Nghệ Lớp 11 Bài 3: Thực Hành: Vẽ Các Hình Chiếu Của Vật Thể Đơn Giản
  • Giáo Án Công Nghệ 8
  • Để tìm tọa độ hình chiếu vuông góc của một điểm lên một mặt phẳng (P) cho trước thì trong bài giảng này thầy sẽ chia sẻ với chúng ta 02 cách làm. Đó là cách làm theo kiểu tự luận và công thức trắc nghiệm nhanh. Tuy nhiên cách giải tự luận sẽ giúp chúng ta hiểu rõ bản chất, còn công thức giải nhanh thì có thể quên bất cứ khi nào.

    Bài toán:

    Cho mặt phẳng (P): $Ax+By+Cz+D=0$ và một điểm $M(x_0;y_0;z_0)$. Tìm tọa độ hình chiếu vuông góc của điểm M lên mặt phẳng (P).

    Đường thẳng d có phương trình là: $left{begin{array}{ll}x=x_0+At\y=y_0+Bt\z=z_0+Ctend{array}right.$

    Bước 2: Tìm giao điểm của đường thẳng d và mặt phẳng (P) là H. Ta sẽ có H chính là hình chiếu vuông góc của điểm M lên mặt phẳng (P).

    Tọa độ điểm H chính là nghiệm của hệ phương trình:

    $left{begin{array}{ll}x=x_0+At\y=y_0+Bt\z=z_0+Ct\Ax+By+Cz+D=0end{array}right.$

    Ví dụ 1: Cho điểm $M(1;2;3)$ và mặt phẳng (P) có phương trình là: $2x+3y-z+9=0$. Tìm tọa độ hình chiếu của điểm M lên mặt phẳng (P).

    Hướng dẫn:

    Vectơ pháp tuyến của mặt phẳng (P) là: $vec{n}(2;3;-1)$

    Gọi d là đường thẳng di qua điểm M và vuông góc với mặt phẳng (P). Khi đo đường thẳng d sẽ nhận $vec{n}(2;3;-1)$ làm vectơ chỉ phương.

    Phương trình tham số của đường thẳng d là: $left{begin{array}{ll}x=1+2t\y=2+3t\z=3-t end{array}right.$

    Gọi H là giao điểm của đường thẳng d và mặt phẳng (P). Khi đó điểm H chính là hình chiếu vuông góc của điểm M lên mặt phẳng (P). Tọa độ điểm H là nghiệm của hệ phương trình sau:

    $left{begin{array}{ll}x=1+2t\y=2+3t\z=3-t\2x+3y-z+9=0 end{array}right.$

    Vậy tọa độ điểm H là: $H(-1;-1;4)$

    Phương pháp 2: Áp dụng công thức tính nhanh tọa độ hình chiếu của điểm

    Công thức tính nhanh tọa độ điểm H là: $left{begin{array}{ll}x_H=x_0+Ak\y_H=y_0+Bk\z_H=z_0+Ckend{array}right.$

    Với $k=-dfrac{Ax_0+By_0+Cz_0+D}{A^2+B^2+C^2}$

    Tại sao có công thức này thì thầy có thể giải thích như sau:

    Theo cách làm ở phương pháp 1 thì tọa độ điểm H là nghiệm của hệ phương trình:

    $left{begin{array}{ll}x=x_0+Ak\y=y_0+Bk\z=z_0+Ck\Ax+By+Cz+D=0end{array}right. kin R$

    Thay 3 phương trình đầu tiên trong hệ vào phương trình thứ 4 ta sẽ có:

    $A(x_0+Ak)+B(y_0+Bk)+C(z_0+Ck)+D=0$

    $k=-dfrac{Ax_0+By_0+Cz_0+D}{A^2+B^2+C^2}$

    Với k được xác định như vậy đó.

    Mặt phẳng (P): $2x+3y-z+9=0$ có $A=2; B=3; C=-1$

    Tọa độ điểm $M(1;2;3)$

    $k=-dfrac{Ax_0+By_0+Cz_0+D}{A^2+B^2+C^2}$

    Tọa độ điểm H là: $left{begin{array}{ll}x_H=x_0+Ak\y_H=y_0+Bk\z_H=z_0+Ckend{array}right.$

    Vậy tọa độ hình chiếu vuông góc của điểm M lên mặt phẳng (P) là $H(-1;-1;4)$

    SUB ĐĂNG KÍ KÊNH GIÚP THẦY NHÉ

    --- Bài cũ hơn ---

  • Cách Vẽ Hình Chiếu Trục Đo Trong Autocad
  • Skkn Hướng Dẫn Cho Học Sinh Cách Vẽ Hình Chiếu Phối Cảnh Hai Điểm Tụ Đối Với Các Số Tự Nhiên
  • Tài Liệu Skkn Hướng Dẫn Cho Học Sinh Cách Vẽ Hình Chiếu Phối Cảnh Hai Điểm Tụ Đối Với Các Số Tự Nhiên
  • Cách Vẽ Hình Chiếu Thứ 3
  • Giải Bài Tập Công Nghệ 11
  • Bạn đang đọc nội dung bài viết Tìm Tọa Độ Hình Chiếu Vuông Góc Của Một Điểm Lên Một Mặt Phẳng trên website Techcombanktower.com. Hy vọng một phần nào đó những thông tin mà chúng tôi đã cung cấp là rất hữu ích với bạn. Nếu nội dung bài viết hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!

  • Web hay
  • Links hay
  • Guest-posts
  • Push
  • Chủ đề top 10
  • Chủ đề top 20
  • Chủ đề top 30
  • Chủ đề top 40
  • Chủ đề top 50
  • Chủ đề top 60
  • Chủ đề top 70
  • Chủ đề top 80
  • Chủ đề top 90
  • Chủ đề top 100
  • Bài viết top 10
  • Bài viết top 20
  • Bài viết top 30
  • Bài viết top 40
  • Bài viết top 50
  • Bài viết top 60
  • Bài viết top 70
  • Bài viết top 80
  • Bài viết top 90
  • Bài viết top 100
  • Chủ đề top 10
  • Chủ đề top 20
  • Chủ đề top 30
  • Chủ đề top 40
  • Chủ đề top 50
  • Chủ đề top 60
  • Chủ đề top 70
  • Chủ đề top 80
  • Chủ đề top 90
  • Chủ đề top 100
  • Bài viết top 10
  • Bài viết top 20
  • Bài viết top 30
  • Bài viết top 40
  • Bài viết top 50
  • Bài viết top 60
  • Bài viết top 70
  • Bài viết top 80
  • Bài viết top 90
  • Bài viết top 100