Đề Xuất 2/2023 # Tìm Tọa Độ Hình Chiếu Vuông Góc Của Một Điểm Lên Một Mặt Phẳng # Top 6 Like | Techcombanktower.com

Đề Xuất 2/2023 # Tìm Tọa Độ Hình Chiếu Vuông Góc Của Một Điểm Lên Một Mặt Phẳng # Top 6 Like

Cập nhật nội dung chi tiết về Tìm Tọa Độ Hình Chiếu Vuông Góc Của Một Điểm Lên Một Mặt Phẳng mới nhất trên website Techcombanktower.com. Hy vọng thông tin trong bài viết sẽ đáp ứng được nhu cầu ngoài mong đợi của bạn, chúng tôi sẽ làm việc thường xuyên để cập nhật nội dung mới nhằm giúp bạn nhận được thông tin nhanh chóng và chính xác nhất.

Để tìm tọa độ hình chiếu vuông góc của một điểm lên một mặt phẳng (P) cho trước thì trong bài giảng này thầy sẽ chia sẻ với chúng ta 02 cách làm. Đó là cách làm theo kiểu tự luận và công thức trắc nghiệm nhanh. Tuy nhiên cách giải tự luận sẽ giúp chúng ta hiểu rõ bản chất, còn công thức giải nhanh thì có thể quên bất cứ khi nào.

Bài toán:

Cho mặt phẳng (P): $Ax+By+Cz+D=0$ và một điểm $M(x_0;y_0;z_0)$. Tìm tọa độ hình chiếu vuông góc của điểm M lên mặt phẳng (P).

Đường thẳng d có phương trình là: $left{begin{array}{ll}x=x_0+At\y=y_0+Bt\z=z_0+Ctend{array}right.$

Bước 2: Tìm giao điểm của đường thẳng d và mặt phẳng (P) là H. Ta sẽ có H chính là hình chiếu vuông góc của điểm M lên mặt phẳng (P).

Tọa độ điểm H chính là nghiệm của hệ phương trình:

$left{begin{array}{ll}x=x_0+At\y=y_0+Bt\z=z_0+Ct\Ax+By+Cz+D=0end{array}right.$

Ví dụ 1: Cho điểm $M(1;2;3)$ và mặt phẳng (P) có phương trình là: $2x+3y-z+9=0$. Tìm tọa độ hình chiếu của điểm M lên mặt phẳng (P).

Hướng dẫn:

Vectơ pháp tuyến của mặt phẳng (P) là: $vec{n}(2;3;-1)$

Gọi d là đường thẳng di qua điểm M và vuông góc với mặt phẳng (P). Khi đo đường thẳng d sẽ nhận $vec{n}(2;3;-1)$ làm vectơ chỉ phương.

Phương trình tham số của đường thẳng d là: $left{begin{array}{ll}x=1+2t\y=2+3t\z=3-t end{array}right.$

Gọi H là giao điểm của đường thẳng d và mặt phẳng (P). Khi đó điểm H chính là hình chiếu vuông góc của điểm M lên mặt phẳng (P). Tọa độ điểm H là nghiệm của hệ phương trình sau:

$left{begin{array}{ll}x=1+2t\y=2+3t\z=3-t\2x+3y-z+9=0 end{array}right.$

Vậy tọa độ điểm H là: $H(-1;-1;4)$

Phương pháp 2: Áp dụng công thức tính nhanh tọa độ hình chiếu của điểm

Công thức tính nhanh tọa độ điểm H là: $left{begin{array}{ll}x_H=x_0+Ak\y_H=y_0+Bk\z_H=z_0+Ckend{array}right.$

Với $k=-dfrac{Ax_0+By_0+Cz_0+D}{A^2+B^2+C^2}$

Tại sao có công thức này thì thầy có thể giải thích như sau:

Theo cách làm ở phương pháp 1 thì tọa độ điểm H là nghiệm của hệ phương trình:

$left{begin{array}{ll}x=x_0+Ak\y=y_0+Bk\z=z_0+Ck\Ax+By+Cz+D=0end{array}right. kin R$

Thay 3 phương trình đầu tiên trong hệ vào phương trình thứ 4 ta sẽ có:

$A(x_0+Ak)+B(y_0+Bk)+C(z_0+Ck)+D=0$

$k=-dfrac{Ax_0+By_0+Cz_0+D}{A^2+B^2+C^2}$

Với k được xác định như vậy đó.

Mặt phẳng (P): $2x+3y-z+9=0$ có $A=2; B=3; C=-1$

Tọa độ điểm $M(1;2;3)$

$k=-dfrac{Ax_0+By_0+Cz_0+D}{A^2+B^2+C^2}$

Tọa độ điểm H là: $left{begin{array}{ll}x_H=x_0+Ak\y_H=y_0+Bk\z_H=z_0+Ckend{array}right.$

Vậy tọa độ hình chiếu vuông góc của điểm M lên mặt phẳng (P) là $H(-1;-1;4)$

SUB ĐĂNG KÍ KÊNH GIÚP THẦY NHÉ

Cách Tìm Hình Chiếu Của Một Điểm Lên Đường Thẳng, Mặt Phẳng Cực Hay

Cách tìm Hình chiếu của một điểm lên đường thẳng, mặt phẳng cực hay

A. Phương pháp giải

Cách xác định hình chiếu của 1 điểm A lên đường thẳng d

– Viết phương trình mặt phẳng (P) chứa điểm A và vuông góc với d

Cách xác định hình chiếu của 1 điểm A lên mặt phẳng (P)

– Viết phương trình đường thẳng đi qua A và vuông góc với (P)

B. Ví dụ minh họa

Ví dụ: 1

Tìm hình chiếu vuông góc của A(1; 2; 1) trên đường thẳng d:

A.

B.

C.

D. Đáp án khác

Hướng dẫn giải

+ Đường thẳng d có vecto chi phương .

+ Gọi mặt phẳng (P) chứa điểm A và vuông góc với d nhận vectơ chỉ phương của d làm vectơ pháp tuyến nên ta có phương trình của (P) là:

1(x – 1) + 2. (y – 2) – 2.(z – 1) = 0 hay x + 2y – 2z – 3 = 0

+ Tìm H là giao điểm của d và (P)

Tọa độ H( t – 2; 2t + 1; -2t – 1) thỏa mãn :

Vậy H là hình chiếu của A trên d và

Chọn A.

Ví dụ: 2

Cho M(1; -1; 2) và mặt phẳng (P): 2x – y + 2z +2 = 0 Tìm tọa độ hình chiếu vuông góc H của M trên mặt phẳng (P)

A. ( 2; 1; 0)

B. ( – 2;0; 1)

C.(-1; 0; 0)

D. ( 0; 2; 1)

Hướng dẫn giải

+ Mặt phẳng (P) có vecto pháp tuyến .

Đường thẳng d đi qua M và vuông góc với (P) nhận vectơ pháp tuyến của (P) làm vectơ chỉ phương

Phương trình của d là:

+ Tìm H là giao điểm của d và (P)

Tọa độ của H(1+2t, -1-t; 2+2t) thỏa mãn:

2(1+2t) – (-1-t) + 2(2+2t) + 2 = 0

⇔ 2+ 4t + 1+ t + 4 + 4t + 2 = 0

⇔ 9t + 9= 0 ⇔ t= – 1 nên H ( – 1; 0; 0)

Chọn C.

Ví dụ: 3

Cho điểm M (2; -1; 8) và đường thẳng . Tìm tọa độ H là hình chiếu vuông góc của điểm M trên d.

A. ( 1; 2; 1)

B.( 5; – 3; 4)

C. ( -2; 1;3)

D. ( 1;1;3)

Hướng dẫn giải

Phương trình tham số của d là:

Xét điểm H(1+2t; -t-1; 2t) thuộc d

Đường thẳng d có vecto chỉ phương

H là hình chiếu vuông góc của M trên d khi và chỉ khi

⇔ 2(2t-1) – 1(-t) + 2(2t-8) = 0

⇔ 4t- 2+ t + 4t – 16 = 0

⇔ 9t – 18= 0 nên t= 2

Chọn B.

Ví dụ: 4

Trong không gian với hệ tọa độ Oxyz; cho đường thẳng và điểm M( -1; 3; 0). Xác định hình chiếu của điểm M trên đường thẳng d?

A. ( -1;3; 0)

B. ( -2; 1; 0)

C. ( -1; 2; 1)

D. ( – 2; -1; 1)

Hướng dẫn giải

Thay tọa độ điểm M vào phương trình đường thẳng d ta được:

Chọn A.

Ví dụ: 5

Trong không gian với hệ tọa độ Oxyz; cho mặt phẳng (P): x+ 2y – z+ 5= 0 và điểm M( -1; 2; 1). Xác định hình chiếu của M lên mặt phẳng (P)

A. ( 1; 0; 2)

B. ( -1; 0; 2)

C. (- 2; 0; 2)

D. ( -1; 2; -2)

Hướng dẫn giải

+Mặt phẳng (P) có vecto pháp tuyến

+ Gọi d là đường thẳng đi qua M ( -1; 2; 1) và vuông góc với mặt phẳng (P) nên đường thẳng d nhận vecto làm vecto chỉ phương

+ Điểm H- hình chiếu vuông góc của M lên mặt phẳng (P) chính là giao điểm của đường thẳng d và mặt phẳng (P).

Thay x= – 1+ t; y= 2+ 2t;z= 1- t vào phương trình mặt phẳng (P) ta được:

( -1+ 2t)+ 2(2+ 2t) – ( 1- t) + 5= 0

⇔ – 1+ 2t+ 4 + 4t – 1+ t+ 5= 0

⇔ 7t+ 7= 0 ⇔ t= – 1 nên H( -2; 0; 2)

Chọn C.

Ví dụ: 6

Trong không gian với hệ tọa độ Oxyz; cho đường thẳng và điểm M(1; 1; 1). Xác định điểm M’ đối xứng với M qua d?

A.( 1; 0; – 2)

B. ( -2; 1; 1)

C. ( 1; 2; 3)

D. (- 1; 0; 6)

Hướng dẫn giải

+ Đường thẳng d đi qua A(0; 0; 2) và có vecto chỉ phương

+ Gọi (P) là mặt phẳng qua M và vuông góc với đường thẳng d nên mặt phẳng (P) nhận vecto chỉ phương của đường thẳng d làm vecto pháp tuyến

-1( x- 1) + 2( y-1) + 1( z- 1) = 0 hay – x + 2y + z – 2= 0

+ Gọi H là hình chiếu vuông góc của điểm M lên d khi đó H chính là giao điểm của đường thẳng d và mặt phẳng (P)

+ Điểm H thuộc đường thẳng d nên H(- t; 2t; 2+ t) . Thay tọa độ H vào phương trình mặt phẳng (P) ta được:

– ( – t) + 2. 2t+ 2+ t- 2= 0 ⇔ 6t = 0 ⇔ t= 0

+ Do M’ đối xứng với M qua d nên H là trung điểm của MM’.

Chọn D.

Ví dụ: 7

Trong không gian với hệ tọa độ Oxyz; cho mặt phẳng (P): x- 2y – 4= 0 và điểm A( 1; 1; 0). Gọi A’ là điểm đối xứng với A qua (P). Tìm A’.

A. ( 3; -3; 0)

B. ( -2; 1; 3)

C. ( 0;2; -1)

D. (-2; 3; 1)

Hướng dẫn giải

+ Mặt phẳng (P) có vecto pháp tuyến .

+ Gọi d là đường thẳng đi qua A( 1; 1; 0) và vuông góc với mặt phẳng (P). Khi đó đường thẳng d có vecto chỉ phương là ( 1; -2; 0)

+ Gọi H là hình chiếu của điểm A lên mặt phẳng ( P). Khi đó; H chính là giao điểm của đường thẳng d và mặt phẳng (P):

1+ t – 2( 1- 2t) – 4= 0 hay t= 1

Vậy hình chiếu vuông góc của A lên ( P) là H( 2; -1; 0) .

+ Do A’ là điểm đối xứng với A qua (P) nên H là trung điểm của AA’.

Chọn A.

C. Bài tập vận dụng

Câu 1:

Tìm hình chiếu vuông góc của A(- 2; 1;0) trên đường thẳng

A. ( -2; 0; 1)

B. ( 2; -1;- 5)

C. ( 0;3;-3)

D. Đáp án khác

Hiển thị lời giải

+ Đường thẳng d có vecto chi phương .

Chọn B.

Câu 2:

Cho M( 0; 1; 3) và mặt phẳng (P): x + y – z +2 = 0. Gọi H ( a; b; c ) là hình chiếu vuông góc của M trên mặt phẳng (P). Tính a+ b + c?

A. – 2

B. 6

C. – 4

D. 4

Hiển thị lời giải

+ Mặt phẳng (P) có vecto pháp tuyến

Phương trình của d là:

Chọn D.

Câu 3:

Cho điểm M ( – 2; 1; – 2) và đường thẳng Tìm tọa độ H là hình chiếu vuông góc của điểm M trên d.

A. ( 1; 2; 1)

B.( 0; 2; 2)

C. ( – 1; 2; 0)

D. (0; 1; 0)

Hiển thị lời giải

Đường thẳng d có vecto chỉ phương

H là hình chiếu vuông góc của M trên d khi và chỉ khi

Chọn B.

Câu 4:

Trong không gian với hệ tọa độ Oxyz; cho đường thẳng và điểm M( -2; 1; 0). Xác định hình chiếu của điểm M trên đường thẳng d?

A. (1; 0; -2)

B. ( -2; 1; 0)

C. ( -1; 2; 1)

D. ( – 2; -1; 1)

Hiển thị lời giải

Chọn B.

Câu 5:

Trong không gian với hệ tọa độ Oxyz; cho mặt phẳng (P): x+ 2z+ 3= 0 và điểm M(-2; 1; 2). Xác định hình chiếu của M lên mặt phẳng (P)

A. ( 1; 0; 2)

B. ( -1; 0; 2)

C. (- 2; 0; 2)

D. ( -3; 1; 0)

Hiển thị lời giải

+Mặt phẳng (P) có vecto pháp tuyến

+ Gọi d là đường thẳng đi qua M (- 2; 1; 2) và vuông góc với mặt phẳng (P) nên đường thẳng d nhận vecto làm vecto chỉ phương

Chọn D.

Câu 6:

Trong không gian với hệ tọa độ Oxyz; cho đường thẳng và điểm M( 1; 0; 2). Xác định điểm M’ đối xứng với M qua d?

A.

B. ( -2; 1; 1)

C.

D. ( 2; 2; 1)

Hiển thị lời giải

+ Đường thẳng d có vecto chỉ phương

Chọn C.

Câu 7:

Trong không gian với hệ tọa độ Oxyz; cho mặt phẳng (P): x – 2y- 3z – 11= 0 và điểm A( 2; 1; 1). Gọi A’ là điểm đối xứng với A qua (P). Tìm A’.

A. ( 4; – 3; – 5)

B. ( -2; 1; 3)

C. ( 0;2; -1)

D. (-2; 3; 1)

Hiển thị lời giải

+ Mặt phẳng (P) có vecto pháp tuyến .

Chọn A.

Ngân hàng trắc nghiệm miễn phí ôn thi THPT Quốc Gia tại chúng tôi

phuong-trinh-duong-thang-trong-khong-gian.jsp

Bài Toán Cạnh Góc Vuông Và Hình Chiếu Của Nó

I. Hướng dẫn giải

– Vận dụng hệ thức: và

– Định lí Pi-ta-go: △ABC vuông ở A ⇔

II. Bài tập mẫu

Bài 1. Cho tam giác vuông trong đó có cạnh góc vuông dài 6cm và 8cm. Tính độ dài hình chiếu của các cạnh góc vuông lên cạnh huyền.

Áp dụng định lí Pi-ta-go vào tam giác vuông ABC, ta được:

Đồ dài hình chiếu BH của AB lên BC:

Ta có: suy ra

Độ dài hình chiếu CH của AC lên BC:

Bài 2.

Cho hai đoạn thẳng AB và CD vuông góc với nhau tại O sao cho OA=OC và OB=OD. Gọi M là trung điểm của BC và Q là giao điểm của OM và AD.

b. Chứng minh rằng và

Giải

a. Ta chứng minh từ đó suy ra:

Ta có: △OBC vuông tại O, có OM là trung tuyến nên:

OM=MB (đường trung tuyến xuất phát từ đỉnh góc vuông bằng một nửa cạnh huyền)

Bài 4. Cho △ABC vuông tại A và đường cao AH. Gọi D và E theo thứ tự là hình chiếu của H lên AB và AC. Chứng minh: chúng tôi = chúng tôi

Giải

△ABC vuông tại A, có AH là đường cao nên AH

Suy ra △AHB và △AHC vuông tại H

△AHB vuông tại H, có HD là đường cao nên: chúng tôi (1)

△AHC vuông tại H, có HE là đường cao nên: chúng tôi (2)

Từ (1) và (2) suy ra AB.AD=AC.AE (đpcm).

III. Bài tập vận dụng

Bài 1. Cho tam giác vuông, biết tỉ số hai cạnh góc vuông là 3:4, cạnh huyền là 125cm. Độ dài các hình chiếu của các cạnh góc vuông trên cạnh huyền bằng:

Bài 2. Cho △ABC có AH là đường cao xuất phát từ A (H thuộc đoạn BC). Nếu

Bài 3. △ABC vuông ở A có đường cao AH (H thuộc cạnh BC). Hình chiếu của H lên AB là D, lên AC là E. Câu nào sau đây sai?

c. chúng tôi = chúng tôi

d.

Bài 4. △ABC nhọn, hai đường cao BD và CE cắt nhau tại H. Trên HB và HC lần lượt lấy các điểm M và N sao cho:

Bài 5. △ABC vuông ở A, có đường cao AH. Biết AC = 10cm, CH = 8cm, khi đó:

c. 15cm và cm

d. 15cm và 90cm

Định Nghĩa Hình Chiếu, Hình Chiếu Vuông Góc Và Cách Xác Định

Số lượt đọc bài viết: 93.077

Hình chiếu là hình biểu diễn một mặt nhìn thấy của vật thể đối với người quan sát đứng trước vật thể, phần khuất được thể hiện bằng nét đứt.

Có 3 loại phép chiếu là:

Phép chiếu xuyên tâm: các tia chiếu xuất phát tại một điểm (tâm chiếu).

Phép chiếu song song: các tia chiếu song song với nhau.

Phép chiếu vuông góc: các tia chiếu vuông góc với mặt phẳng chiếu.

Định nghĩa góc của đường thẳng lên mặt phẳng

Góc giữa đường thẳng d và mặt phẳng (alpha) là góc giữa d và a, trong đó a là hình chiếu vuông góc của d lên (alpha).

Định nghĩa hình chiếu vuông góc là gì?

Hình chiếu vuông góc trên một mặt phẳng là hình chiếu hợp với mặt phẳng một góc bằng 90 độ.

Nếu AH vuông góc với mặt phẳng (Q) tại H thì điểm H gọi là hình chiếu vuông góc của điểm A lên mặt phẳng (Q).

Các loại hình chiếu vuông góc:

Hình chiếu đứng nhìn từ mặt trước của mặt phẳng

Hình chiếu cạnh nhìn từ bên trái hoặc bên phải vật thể

Hình chiếu bằng nhìn từ trên xuống vật thể.

Định nghĩa phương pháp hình chiếu vuông góc

Phương pháp hình chiếu vuông góc là phương pháp biểu diễn các hình chiếu vuông góc trên cùng một mặt phẳng hình chiếu.

Trong không gian cho mặt phẳng ((alpha)) và đường thẳng d không vuông góc với mặt phẳng ((alpha)). Để tìm hình chiếu vuông góc của d lên ((alpha)) ta chọn 2 điểm A,B trên ((alpha)) rồi tìm hình chiếu K,H lần lượt của A,B lên ((alpha)). Đường thẳng a trong ((alpha)) đi qua 2 điểm H,K chính là hình chiếu vuông góc của đường thẳng d lên mặt phẳng ((alpha)).

Trường hợp d và ((alpha)) song song nhau, nếu gọi a là hình chiếu vuông góc của d trên ((alpha)) thì ta có d song song với a.

Trường hợp đặc biệt d cắt ((alpha)) tại M: Chọn trên d một điểm B khác M rồi tìm điểm H là hình chiếu vuông góc của B lên ((alpha)). Khi đó hình chiếu vuông góc của d lên ((alpha)) là đường thẳng a qua 2 điểm M và H.

Định nghĩa hình chiếu trong tam giác là gì?

Hình chiếu trong tam giác của một điểm P đối với tam giác cho trước là hình chiếu của P lên ba cạnh tam giác đó.

Xét tam giác ABC, một điểm P trên mặt phẳng không trùng với ba đỉnh A, B, C. Gọi các giao điểm của ba đường thẳng qua P kẻ vuông góc với điểm ba cạnh tam giác BC, CA, AB là L, M, N. Khi đó LMN là tam giác bàn đạp ứng với điểm P của tam giác ABC. Ứng với mỗi điểm P ta có một tam giác bàn đạp khác nhau, một số ví dụ:

Nếu P = trực tâm, khi đó LMN = Tam giác orthic.

Nếu P = tâm nội tiếp, khi đó LMN = Tam giác tiếp xúc trong.

Nếu P = tâm ngoại tiếp, khi đó LMN = Tam giác trung bình.

Khi P nằm trên đường tròn ngoại tiếp tam giác ABC thì tam giác bàn đạp của nó suy biến thành đường thẳng Simson, đường thẳng này đặt tên theo nhà toán học Robert Simson.

P nằm trên đường tròn ngoại tiếp, hình chiếu trong tam giác (tam giác bàn đạp) sẽ suy biến thành một đường thẳng.

hình chiếu đứng

các loại hình chiếu

cách vẽ hình chiếu

đặc điểm của hình chiếu

hình chiếu là gì toán học 8

hình chiếu vuông góc là gì

hình chiếu vuông góc trong không gian

tính chất hình chiếu trong tam giác vuông

lý thuyết và định nghĩa hình chiếu là gì

(Nguồn: www.youtube.com)

Please follow and like us:

Bạn đang đọc nội dung bài viết Tìm Tọa Độ Hình Chiếu Vuông Góc Của Một Điểm Lên Một Mặt Phẳng trên website Techcombanktower.com. Hy vọng một phần nào đó những thông tin mà chúng tôi đã cung cấp là rất hữu ích với bạn. Nếu nội dung bài viết hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!