Đề Xuất 10/2022 ❤️ Kỹ Thuật Giải Phương Trình Hàm ❣️ Top Like | Techcombanktower.com

Đề Xuất 10/2022 ❤️ Kỹ Thuật Giải Phương Trình Hàm ❣️ Top Like

Xem 5,940

Cập nhật nội dung chi tiết về Kỹ Thuật Giải Phương Trình Hàm mới nhất ngày 02/10/2022 trên website Techcombanktower.com. Hy vọng thông tin trong bài viết sẽ đáp ứng được nhu cầu ngoài mong đợi của bạn, chúng tôi sẽ làm việc thường xuyên để cập nhật nội dung mới nhằm giúp bạn nhận được thông tin nhanh chóng và chính xác nhất. Cho đến nay, bài viết này đã thu hút được 5,940 lượt xem.

Hoán Vị, Chỉnh Hợp, Tổ Hợp Và Bài Tập Áp Dụng

14 Bài Dạng Bài Toán Bằng Cách Lập Phương Trình (Ôn Kì 2 Lớp 8 Toán)

Đề Cương Ôn Thi Học Kì 2 Toán Lớp 8 Hữu Ích Nhất Năm 2022

Bài 34,35,36 Trang 25,26 Sách Toán 8 Tập 2: Bài Toán Bằng Cách Lập Phương Trình

Cách Giải Phương Trình Lượng Giác Không Mẫu Mực Pt Luonggiackhongmaumuc Doc

Published on

kỹ thuật giải phương trình hàm

3. 1 PHƯƠNG PHÁP THẾ BIẾN Hint: 1. Tính f(0) 2. Thế y = −1, chứng minh f là hàm lẻ 3. Thế y = 1 ⇒ f(2x + 1) = 2f(x) + 1 4. Tính f(2(u + v + uv) + 1) theo (3) và theo giả thiết để suy ra f(2uv + u) = 2f(uv) + f(u) 5. Cho v = −1 2 , u 2 → x và u → y, 2uv → x để suy ra điều phải chứng minh Ví dụ 1.4. Tìm tất cả các hàm số f : R → R đồng thời thỏa mãn các điều kiện sau: f(x) = xf 1 x , ∀x = 0 f(x) + f(y) = 1 + f(x + y), ∀x, y ∈ R, (x, y) = (0, 0); x + y = 0 Hint: 1. Tính f(0), f(−1) 2. Tính a + 1 với a = f(1) = f € x+1 x+1 Š = f € x + 1 1 x+1 Š theo cả hai điều kiện. Đáp số: f(x) = x + 1 Nhận xét: Thủ thuật này áp dụng cho một lớp các bài toán gần tuyến tính Ví dụ 1.5. Tìm tất cả các hàm số f : R+ → R thỏa f(1) = 1 2 và f(xy) = f(x)f ‚ 3 y Œ + f(y)f 3 x , ∀x, y ∈ R+ Hint: 1. Tính f(3) 2. Thế y → 3 x Đáp số: f(x) = 1 2 Ví dụ 1.6. Tìm tất cả các hàm số f : R∗ → R thỏa mãn điều kiện: f(x) + 2f 1 x = 3x, ∀x ∈ R∗ Hint: Thế x → 1 x Đáp số: f(x) = 2 x − x Ví dụ 1.7. Tìm tất cả các hàm số f : R{0, 1} → R thỏa mãn điều kiện: f(x) + f x − 1 x = 2x, ∀x, ∈ R{0, 1} Hint: Thế x → x−1 x , x → −1 x−1 Đáp số: f(x) = x + 1 1−x − x−1 x Luyện tập: 2. Tìm tất cả các hàm số f : Q+ → Q+ thỏa mãn điều kiện: f(x + 1) = f(x) + 1, ∀x ∈ Q+ và f(x3 ) = f3 (x), ∀x ∈ Q+ GV: Trần Minh Hiền. . . . . .PTH bồi dưỡng học sinh giỏi . . . . . .Trường THPT chuyên Quang Trung www.VNMATH.com

4. 1 PHƯƠNG PHÁP THẾ BIẾN Hint: 1. Quy nạp f(x + n) = f(x) + n, ∀x ∈ Q+ , ∀n ∈ N 2. Với p q ∈ Q+ , tính f p q + q2 3 ‹ theo hai cách. Đáp số: f(x) = x, ∀x ∈ Q+ Ví dụ 1.8. (VMO 2002). Hãy tìm tất cả các hàm số f(x) xác định trên tập số thực R và thỏa mãn hệ thức f (y − f(x)) = f € x2002 − y Š − 2001.y.f(x), ∀x, y ∈ R. (1) Giải a) Thế y = f(x) vào (1) ta được f(0) = f € x2002 − f(x) Š − 2002. (f(x))2 , ∀x ∈ R. (2) b) Lại thay y = x2002 vào (1) thì f € x2002 − f(x) Š = f(0) − 2001.x2002 .f(x), ∀x ∈ R. (3) Lấy (2) cộng với (3) ta được f(x) € f(x) + x2002 Š = 0, ∀x ∈ R. Từ đây suy ra với mỗi giá trị x ∈ R thì ta có hoặc là f(x) = 0 hoặc là f(x) = −x2002 . Ta sẽ chỉ ra rằng để thỏa mãn yêu cầu bài toán thì bắt buộc phải có đồng nhất f(x) ≡ 0, ∀x ∈ R hoặc f(x) ≡ −x2002 , ∀x ∈ R. Thật vậy, vì f(0) = 0 trong cả hai hàm số trên, nên không mất tính tổng quát ta có thể giả sử tồn tại a = 0 sao cho f(a) = 0, và tồn tại b 0 sao cho f(b) = −b2002 (vì chỉ cần thay x = 0 vào quan hệ (1) ta nhận được hàm f là hàm chẵn). Khi đó thế x = a và y = −b vào (1) ta được f(−b) = f € a2002 + b Š . Vậy ta nhận được dãy quan hệ sau 0 = −b2002 = f(b) = f(−b) = f € a2002 + b Š = 0(mâu thuẫn vì 0 = 0) − (a2002 + b) 2002 (mâu thuẫn vì − (a2002 + b) 2002 −b2002 ) . Bằng cách thử lại quan hệ hàm ban đầu ta kết luận chỉ có hàm số f(x) ≡ 0, ∀x ∈ R thỏa mãn yêu cầu bài toán. Ví dụ 1.9. (Hàn Quốc 2003) Tìm tất cả các hàm số f : R → R thỏa mãn f (x − f(y)) = f(x) + xf(y) + f (f(y)) , ∀x, y ∈ R. (4) GV: Trần Minh Hiền. . . . . .PTH bồi dưỡng học sinh giỏi . . . . . .Trường THPT chuyên Quang Trung www.VNMATH.com

6. 1 PHƯƠNG PHÁP THẾ BIẾN Ví dụ 1.10. (Iran 1999) Xác định các hàm số f : R → R thỏa mãn f (f(x) + y) = f € x2 − y Š + 4yf(x), ∀x, y ∈ R. Giải a) Thế y = x2 ta được f € f(x) + x2 Š = f(0) + 4×2 f(x), ∀x ∈ R. b) Thế y = −f(x) ta được f(0) = f € f(x) + x2 Š − 4 (f(x))2 , ∀x ∈ R. Cộng hai phương trình trên ta được 4f(x) € f(x) − x2 Š = 0, ∀x ∈ R. Từ đây ta thấy với mỗi x ∈ R thì hoặc là f(x) ≡ 0 hoặc là f(x) = −x2 . Ta chứng minh nếu hàm f thỏa mãn yêu cầu bài toán thì f phải đồng nhất với hai hàm số trên. Nhận thấy f(0) = 0, từ đó thay x = 0 ta được f(y) = f(−y), ∀y ∈ R, hay f là hàm chẵn. Giả sử tồn tại a = 0, b = 0 sao cho f(a) = 0, f(b) = −b2 , khi đó thay x = a, y = −b ta được f(−b) = f(a2 + b) → f(b) = f(a2 + b). Từ đó ta có quan hệ sau 0 = −b2 = f(b) = f(−b) = f € a2 + b Š = 0(mâu thuẫn vì 0 = 0) − (a2 + b) 2 (mâu thuẫn vì − (a2 + b) 2 −b2 ) . Do đó xảy ra điều mâu thuẫn. Thử lại thấy hàm số f(x) ≡ 0 thỏa mãn yêu cầu. Nhận xét: 1. Rõ ràng bài toán VMO 2002 có ý tưởng giống bài toán này. 2. Ngoài phép thế như trên thì bài toán này ta cũng có thể thực hiện những phép thế khác như sau: a) Thế y = 1 2 € x2 − f(x) Š . b) Thế y = 0 để có f (f(x)) = f (x2 ), sau đó thế y = x2 − f(x). c) Thế y = x − f(x) và sau đó là y = x2 − x. Ví dụ 1.11. Tìm hàm số f : R → R thỏa mãn điều kiện: f (x − f(y)) = 2f(x) + x + f(y), ∀x, y ∈ R. (6) Giải GV: Trần Minh Hiền. . . . . .PTH bồi dưỡng học sinh giỏi . . . . . .Trường THPT chuyên Quang Trung www.VNMATH.com

9. 1 PHƯƠNG PHÁP THẾ BIẾN Vậy f(x) = −f(x), ∀x ∈ R, từ điều này kết hợp với (9) ta có f(0) (f(x) − 1) = 0, ∀x ∈ R. Từ đây suy ra f(0) = 0, vì nếu ngược lại thì f(x) = 1, ∀x = 0, trái với điều kiện f là hàm lẻ. Từ đây ta nhận được quan hệ quen thuộc (f(x))2 = x2 , ∀x ∈ R. Giả sử tồn tại x0 ∈ R sao cho f (x0) = x0, khi đó trong (*) ta có x0 = f (x0) = −f (f(x0)) = −f(x0) = x0, vô lý. Vậy chứng tỏ f(x) = −x, ∀x ∈ R. Thử lại thấy hàm này thỏa mãn bài toán. Nhận xét: Bài toán trên cho kết quả là hàm chẵn f(x) = −x. Nếu vẫn giữa nguyên vế phải và để nhận được hàm lẻ f(x) = x, ta sửa lại dữ kiện trong vế trái như trong ví dụ sau Ví dụ 1.14. Tìm tất cả các hàm số f : R → R thỏa mãn điều kiện f (f(x) − y) = f(x) − f(y) + f(x)f(y) − xy, ∀x, y ∈ R. Giải a) Thế y = 0 ta được f (f(x)) = f(x) − f(0) + f(0).f(x), ∀x ∈ R. (10) b) Thế y = f(x) và sử dụng kết quả trên, ta được f(0) = f(x) − f (f(x)) + f(x).f (f(x)) − xf(x) (∗) = f(0) − 2f(0).f(x) + (f(x))2 + f(0). (f(x))2 − xf(x), hay −2f(0).f(x) + (f(x))2 + f(0). (f(x))2 − xf(x) = 0, ∀x ∈ R. c) Thế x = 0 vào đẳng thức trên ta được (f(0))2 − (f(0))2 = 0 → f(0) = 0 hoặc f(0) = 1. d) Nếu f(0) = 0 thì thay vào (10) ta có f (f(x)) = f(x), ∀x ∈ R, thay kết quả này vào trong (*) ta có f(x) = x. e) Nếu f(0) = 1 thay vào (10) ta có f (f(x)) = 2f(x) − 1, thay vào trong (*) ta có f(x) = 1 2 x + 1. Kết luận: Thay vào ta thấy chỉ có hàm số f(x) = x, ∀x ∈ R là thỏa mãn yêu cầu. Ví dụ 1.15. (AMM,E2176). Tìm tất cả các hàm số f : Q → Q thỏa mãn điều kiện f(2) = 2 và f ‚ x + y x − y Œ = f(x) + f(y) f(x) − f(y) , ∀x = y. Giải GV: Trần Minh Hiền. . . . . .PTH bồi dưỡng học sinh giỏi . . . . . .Trường THPT chuyên Quang Trung www.VNMATH.com

10. 1 PHƯƠNG PHÁP THẾ BIẾN Ta sẽ chứng minh f(x) = x là nghiệm duy nhất của bài toán dựa vào một chuỗi các sự kiện sau. Trước tiên nhận thấy f không thể là hàm hằng. a) Tính f(0), f(1). Thay y = 0 ta nhận được f(1) = f(x) + f(0) f(x) − f(0) → (f(1) − 1) f(x) = f(0) (1 + f(1)) , ∀x ∈ Q. Suy ra f(1) = 1, f(0) = 0. b) Hàm f là hàm lẻ. Thay y = −x ta có 0 = f(0) = f(x) + f(−x) → f(−x) = −f(x), ∀x ∈ Q. c) Thay y = cx, c = 1, x = 0 ta có f(x) + f(cx) f(x) − f(cx) = f 1 + c 1 − c = 1 + f(c) 1 − f(c) , suy ra f(cx) = f(c).f(x), lấy c = q, x = p q thì ta được f ‚ p q Œ = f(p) f(q) Ví dụ 1.16. Tìm tất cả các hàm số f : R → R thỏa mãn f € (x − y)2 Š = (f(x))2 − 2xf(y) + y2 , ∀x, y ∈ R. Giải Thay x = y = 0 thì (f(0)) = (f(0))2 → f(0) = 0 hoặc f(0) = 1. 1. Nếu f(0) = 0, thì thay x = y vào điều kiện ban đầu ta được f(0) = (f(x))2 − 2xf(x) + x2 = (f(x) − x)2 → f(x) = x, ∀x ∈ R. Nhận thấy hàm số này thỏa mãn. 2. Nếu f(0) = 1 thì lại vẫn thay x = y = 0 ta nhận được, với mỗi x ∈ R thì hoặc là f(x) = x + 1 hoặc f(x) = x − 1. Giả sử tồn tại giá trị a sao cho f(a) = a − 1. Khi đó thay x = a, y = 0 ta được f € a2 Š = a2 − 4a + 1. Nhưng ta lại có hoặc là f (a2 ) = a2 + 1 hoặc là f (a2 ) = a2 − 1. Do đó ta phải có hoặc là a2 − 4a + 1 = a2 + 1 hoặc a2 − 4a + 1 = a2 − 1, tức a = 0 hoặc là a = 1 2 . Tuy nhiên kiểm tra đều không thỏa. Vậy hàm số thỏa mãn yêu cầu là f(x) = x, ∀x ∈ R hoặc là f(x) = x + 1, ∀x ∈ R. Ví dụ 1.17. (THTT T9/361) Tìm tất cả các hàm số f : R → R thỏa mãn điều kiện f € x3 − y Š + 2y € 3 (f(x))2 + y3 Š = f (x + f(y)) , ∀x, y ∈ R. GV: Trần Minh Hiền. . . . . .PTH bồi dưỡng học sinh giỏi . . . . . .Trường THPT chuyên Quang Trung www.VNMATH.com

11. 1 PHƯƠNG PHÁP THẾ BIẾN Giải a) Thay y = x3 ta có f(0) + 2×3 € 3 (f(x))2 + x6 Š = f € x3 + f(x) Š , ∀x ∈ R. b) Thay y = −f(x) ta được f € x3 + f(x) Š − 2f(x) € 3 (f(x))2 + (f(x))2 Š = f(0), ∀x ∈ R. Từ hai đẳng thức trên ta được 2×3 € 3 (f(x))2 + x6 Š = 8 (f(x))3 , ∀x ∈ R. Do đó 0 = 4 (f(x))2 − x3 € 3 (f(x))2 + x6 Š = € 4 (f(x))3 − 4 (f(x))2 .x3 Š + € (f(x))2 .x3 − x9 Š = € f(x) − x3 Š € 4 (f(x))2 + x3 € f(x) + x3 ŠŠ = € f(x) − x3 Š ‚ 2f(x) + x3 4 Œ2 + 15 16 x6 ! . Chú ý rằng ‚ 2f(x) + x3 4 Œ2 + 15 16 x6 = 0 thì x = 0, f(0) = 0. Bởi vậy trong mọi trường hợp ta đều có f(x) = x3 . Thử lại thấy hàm số này thỏa mãn bài toán. GV: Trần Minh Hiền. . . . . .PTH bồi dưỡng học sinh giỏi . . . . . .Trường THPT chuyên Quang Trung www.VNMATH.com

13. f 1 qn .qn.xn

19. ≤ N. Vì 1 r ∈ Q nên

23. 2 PHƯƠNG TRÌNH HÀM CAUCHY liên tục thỏa mãn f € x+y 2 Š = 2f(x)f(y) f(x)+f(y) (8) là f(x) = 1 b , b 0 Chứng minh Chỉ cần đặt g(x) = 1 f(x) , ta nhận được quan hệ hàm Jensen theo hàm g(x) nêng(x) = cx + d. Do đó f(x) = 1 cx+d . Tuy nhiên hàm số này cần phải thỏa mãn điều kiện f(x) ∈ R+ nên: 1 cx+d 0, ∀x ∈ R ⇒c = 0, b 0, vậy hàm thu được là f(x) = 1 b , b 0 tùy ý. Lại vẫn trong quan hệ hàm Jensen nếu ta thực hiện phép bình phương vào hàm số thì ta nhận ngay được hệ quả sau: Hệ quả 9. Hàm số f(x)liên tục trên R thỏa f € x+y 2 Š = q 2 2 (9) là f(x) = c với c ≥ 0. Chứng minh Từ quan hệ hàm số suy ra f(x) ≥ 0, ∀x ∈ R. Ta có: € f € x+y 2 ŠŠ2 = 2 2 . Đặt g(x) = 2 = g(u). Khi đó g(u) ≥ 0, và ta có: g € u+v 2 Š = g(u)+g(v) 2 , ∀u, v ∈ R Vậy g(u) = au + b. Để g(u) ≥ 0, ∀u ∈ Rthì a = 0, b ≥ 0. Do đó f(x) ≡ c, c ≥ 0. Lại từ quan hệ hàm Jensen f € x+y 2 Š = f(x)+f(y) 2 , ta xét phép gán hàm f(x) = g € 1 x Š thì ta nhận được quan hệ hàm số: g 1 (x+y)/2 = g(1 x )+g(1 y ) 2 ⇔ g 2 x+y = g(1 x )+g(1 y ) 2 , thay ngược trở lại biến bình thường ta được: Hệ quả 12. Hàm số f(x) liên tục trên R{0} thỏa mãn f „ 2 1 x + 1 y Ž = f(x) + f(y) 2 , ∀x, y, x + y = 0 (12) là hàm số f(x) = a x + b; a, b ∈ R tùy ý. Giải Với cách thiết lập như trên thì ta có g(x) = ax + b, với g(x) = f € 1 x Š , khi đó thì f(x) = a x + b; a, b ∈ R. Lại từ quan hệ hàm Jensen f € x+y 2 Š = f(x)+f(y) 2 , ta xét phép gán hàm f(x) = 1 g(1 x ) thì ta nhận được quan hệ hàm: 1 g 1 x+y 2 ‹ = 1 g(1 x ) + 1 g(1 y ) 2 = g € 1 x Š + g 1 y 2g € 1 x Š g 1 y ⇔ g ‚ 2 x + y Œ = 2g € 1 x Š g 1 y g € 1 x Š + g 1 y = 2 1 g(1 x ) + 1 g(1 y ) Thay ngược lại biến ta được: Hệ quả 13. Hàm số f(x) xác định liên tục trên R{0} thỏa f 2 1 x + 1 y ‹ = 2 1 f(x) + 1 f(y) (13) là 2 6 6 4 f(x) = x a , a = 0 f(x) = 1 b , b = 0 . Bằng cách thực hiện các phép toán khai căn, nâng lũy thừa, logarit GV: Trần Minh Hiền. . . . . .PTH bồi dưỡng học sinh giỏi . . . . . .Trường THPT chuyên Quang Trung www.VNMATH.com

24. 2 PHƯƠNG TRÌNH HÀM CAUCHY Nepe như trong các phần trước ta thu được các kết quả tương tự sau: Hệ quả 14. Hàm số f(x) xác định liên tục trên R{0} thỏa f 2 1 x + 1 y ‹ = È f(x)f(y), ∀x, y, x + y = 0(14) là: 2 4 f(x) ≡ 0 f(x) = e a x +b , a, b ∈ R Hệ quả 15. Hàm số f(x) xác định liên tục trên R{0} thỏa f 2 1 x + 1 y ‹ = q 2 2 , ∀x, y, x + y = 0 (15) là: f(x) ≡ c, c ≥ 0 tùy ý. Hệ quả 16. Các hàm f(x) ≥ 0 xác định liên tục trên R+ thỏa f √ x2+y2 2 = q 2 2 , ∀x, y ∈ R+ (16) là: f(x) = √ ax2 + b với a, b ≥ 0 tùy ý. Hệ quả 17. Các hàm số f(x) xác định, liện tục trên R và thỏa f √ x2+y2 2 = f(x)+f(y) 2 , ∀x, y ∈ R (17) là: f(x) = ax2 + b; ∀a, b ∈ R Hệ quả 18. Các hàm số f(x) xác định, liện tục trên R thỏa f √ x2+y2 2 = È f(x)f(y), ∀x, y ∈ R (18) là: 2 4 f(x) ≡ 0 f(x) = eax2+b ; ∀a, b ∈ R Hệ quả 19. Các hàm số f(x) xác định, liện tục trên R thỏa f √ x2+y2 2 = 2 1 f(x) + 1 f(y) , ∀x, y ∈ R (19) là: f(x) = 1 ax2+b với ab ≥ 0, b = 0 tùy ý. IV. Các bài tập vận dụng Bài toán 1. Tìm tất cả các hàm f(x) liên tục trên R thỏa: f(x + y) = f(x)+f(y)+f(x)f(y) Giải: Từ bài toán ta có: f(x+y)+1 = (f(x)+1)(f(y)+1) nên đặt g(x) = f(x)+1 thì ta có g(x+y) = g(x).g(y) ⇒ g(x) = ax vậy f(x) = ax −1. Bài toán 2. Tìm tất cả các hàm số f(x) liên tục trên R thỏa mãn điều kiện:f(x)+f(y)−f(x+y) = xy, ∀x, y ∈ R Giải Ta có thể viết lại phương trình hàm dưới dạng: f(x) + f(y) − f(x + y) = 1 2 = 0 ⇒ f(0) = 1, vì dễ dàng nhận thấy f(x) ≡ 0, ∀x ∈ R không là nghiệm của phương trình. Thay y = −x ta nhận được: f(x)f(−x) − f(0) = −sin2 x, ∀x ∈ R ⇒ f(x)f(−x) = 1 − sin2 x = cos2 x, ∀x ∈ R(1). Thay x = π 2 vào (1) ta được nên: f € π 2 Š .f € −π 2 Š = 0 Hoặc f € π 2 Š = 0 thay vào hàm ta được: −f € x + π 2 Š = sin x ⇒ f € x + π 2 Š = − sin x → f(x) = − sin € x − π 2 Š = cos x, ∀x ∈ R Hoặc f € −π 2 Š = 0 thay vào hàm ta được: f € x − π 2 Š = sin x ⇒ f (x) = sin € x + π 2 Š = cos x, ∀x ∈ R Dễ dàng kiểm tra lại thấy f(x) = cos x là hàm thỏa mãn yêu cầu bài toán. Bài toán 10. Tìm tất cả các hàm số f : R → R thỏa mãn f(x + y − xy) + f(xy) = f(x) + f(y) (1) với mọi x, y ∈ R. Giải Ta chứng minh nếu f là hàm số thỏa mãn điều kiện bài toán thì hàm số F(x) = f(x + 1) − f(x) sẽ thỏa mãn điều kiện hàm Cauchy F(u + v) = F(u) + F(v) với mọi (u, v) ∈ ∆ = {(u, v) : u + v 0hoặc u = v = 0 hoặc u + v ≤ −4} Thật vậy, giả sử flà hàm số thỏa mãn điều kiện (1). Ta định nghĩa hàm số f∗ (x, y) bởi: f∗ (x, y) = f(x) + f(y) − f(xy) Dễ thấy rằng hàm f∗ thỏa mãn phương trình hàm: f∗ (xy, z)+f∗ (x, y) = f∗ (x, yz)+f∗ (y, z)(1) Mặt khác ta có f∗ (x, y) = f(x+y −xy)(2) Thay (2) vào (1) ta được: f xy + 1 y − x + f(x + y − xy) = f(1) + f y + 1 y − 1 , với mọi x, y = 0 Đặt xy + 1 y − x = u + 1 và x + y − xy = v + 1(3) ta nhận được: f(u + 1) + f(v + 1) = f(1) + f(u + v + 1), với mọi u, v thỏa mãn điều kiện trên. Bằng việc cộng hai đẳng thức của (3) ta có y + 1 y = u + v + 2, để có nghiệm y = 0 chỉ trong trường hợp D = {(u + v + 2)2 − 4 = (u + v)(u + v + 4) ≥ 0}. Điều kiện này xảy ra khi và chỉ khi hoặc là u + v 0 hoặc u + v = 0 hoặc u + v + 4 ≤ 0. Bằng việc kiểm tra điều kiện ta thấy bài toán được thỏa. Nếu f là một nghiệm của bài toán thì f phải có dạng f(x) = F(x − 1) + f(1)(1) với mọi x, trong đó F thỏa mãn phương trình hàm Cauchy F(x + y) = F(x) + F(y) với mọi x, y. Chứng minh Theo chứng minh trên, thì fcó dạng với F thỏa mãn phương trình Cauchy với mọi (u, v) ∈ ∆. Ta sẽ chứng minh rằng Fthỏa mãn phương trình Cauchy với mọi (u, v) bất kỳ. Giả sử , khi đó tồn tại một số thực sao cho các điểm (x, u), (x + u, v), (x, u + v) nằm trong ∆ với việc xác định x là: cố định (u, v) ∈ ∆ thì từ các bất đẳng thức x + u 0, x + u + v 0 ta tìm được điều kiện của x. Nhưng khi đó: F(u) = F(x + u) − F(x) F(v) = F(x + u + v) − F(x + u) F(u + v) = F(x + u + v) − F(x) Suy ra từ các phương trình này ta có F(u) + F(v) = F(u + v). Và bài toán được chứng minh. Bài toán 14(VMO 1992 bảng B). Cho hàm số f : R → R thỏa mãn f(x + 2xy) = f(x) + 2f(xy), ∀x, y ∈ R. Biết f(1991) = a, hãy tính f(1992) Giải Thay x = 0 ta được f(0) = 0. Thay y = −1 ta nhận được f(x) = −f(−x). Thay y = −1 2 ta được f(x) = 2f € x 2 Š . Xét x = 0 và số thực t bất kỳ, đặt y = t 2x ta nhận được: f(x + t) = f(x) + 2f € t 2 Š = f(x) + f(t) Vậy f là hàm Cauchy nên f(x) = kx, với k là hằng số nào đó. Từ f(1991) = a ⇒ k.1991 = a ⇒ k = a 1991 . Do đó f(1992) = 1992 1991 a Bài toán 15. Tìm tất cả các hàm số f(x) xác định trên (0, +∞), có đạo hàm tại x = 1 và thỏa mãn điều kiện f(xy) = √ xf(y) + √ yf(x), ∀x, y ∈ R+ Giải Xét các hàm số sau g(x) = f(x)√ x . Từ giả thiết của bài toán ta có: √ xy.g(xy) = √ xy.g(x) + √ xy.g(y) ⇔ g(xy) = g(x) + g(y), ∀x, y ∈ R+ Vậy g(x) = logax, x 0. GV: Trần Minh Hiền. . . . . .PTH bồi dưỡng học sinh giỏi . . . . . .Trường THPT chuyên Quang Trung www.VNMATH.com

26. 2 PHƯƠNG TRÌNH HÀM CAUCHY Từ đó ta có kết quả hàm số f(x) = k. √ x.logax với k ∈ R. Lại từ (1) nếu ta đặt z = x + y thì y = z − x và quan hệ (1) trở thành f(z) = f(x).f(z − x), nếu với giả thiết f(x) = 0 ∀x ∈ R thì ta có thể viết lại như sau: f(z − x) = f(z) f(x) , và ta đề xuất được bài toán sau đây: Bài toán 18. Xác định các hàm số f(x) liên tục trên R thỏa mãn điều kiện: 8 : f(x − y) = f(x) f(y) , ∀x, y ∈ R f(x) = 0 ∀x ∈ R (2) Vì giả thiết là f(x) = 0 ∀x ∈ R nên chỉ có hàm số f(x) = ax (a 0) thỏa mãn yêu cầu bài toán. To be continued . GV: Trần Minh Hiền. . . . . .PTH bồi dưỡng học sinh giỏi . . . . . .Trường THPT chuyên Quang Trung www.VNMATH.com

27. 3 PHƯƠNG PHÁP QUY NẠP 3 Phương pháp quy nạp Phương pháp này yêu cầu ta trước hết tính f(0), f(1) rồi dựa vào đó tính f(n) với n ∈ N. Sau đó tính f(n) với n ∈ Z. Tính tiếp f € 1 n Š , từ đó suy ra biểu thức của f(r) với r ∈ Q. Phương pháp này thường sử dụng khi cần tìm hàm số xác định trên N, Z, Q. Ví dụ 3.1. Tìm tất cả các hàm số f : Q → Q thỏa mãn điều kiện: f(1) = 2, f(xy) = f(x)f(y) − f(x + y) + 1, ∀x, y ∈ Q. (11) Giải Cho y = 1 và sử dụng giả thiết f(1) = 2 ta được f(x + 1) = f(x) + 1, ∀x ∈ Q. (12) Bằng phương pháp quy nạp ta chứng minh được f(x + m) = f(x) + m, ∀x ∈ Q, ∀m ∈ N. (13) Tiếp theo ta sẽ lần lượt chứng minh: a) f(n) = n + 1, ∀n ∈ N. Thật vậy trong (12) cho x = 0 ta tìm được f(0) = 1. Giả sử ta đã có f(k) = k + 1 thì f(k + 1) = f(k) + 1 = k + 1 + 1 = k + 2. b) Tiếp theo ta chứng minh f(m) = m+1, ∀m ∈ Z. Thật vậy, trong (12) cho x = −1 ta được f(−1) = 0. Trong (11) cho y = −1 thì ta có f(−x) = −f(x − 1) + 1, ∀x ∈ Q. Khi đó với m ∈ Z, m 0 thì đặt n = −m, khi đó n ∈ N nên sử dụng kết quả trên và phần (a) ta được f(m) = f(−n) = −f(n − 1) + 1 = −n + 1 = m + 1. c) Tiếp theo ta chứng minh f(x) = x + 1, ∀x ∈ Q. Trước tiên ta tính f 1 n , n ∈ N+ , bằng cách trong (11) cho x = n, y = 1 n ta có 2 = (n + 1)f 1 n − f n + 1 n + 1. Lại theo (13) thì f n + 1 n = f 1 n + n thay vào phương trình trên ta được f 1 n = n + 1 n = 1 n + 1. GV: Trần Minh Hiền. . . . . .PTH bồi dưỡng học sinh giỏi . . . . . .Trường THPT chuyên Quang Trung www.VNMATH.com

30. 3 PHƯƠNG PHÁP QUY NẠP Từ đây lấy căn bậc hai ta được f(u + v) + f(u − v) = 2 (f(u) + f(v)) , ∀u ≥ v ≥ 0. Phương trình hàm này có nghiệm là f(x) = f(1)x2 , ∀x ≥ 0. Ngoài ra dễ dàng tính được f(1) = 0 hoặc f(1) = 1. Kết luận: Các hàm số thỏa mãn là f(x) ≡ 0, f(x) ≡ 1 2 và f(x) = x2 , ∀x ≥ 0. Nhận xét: Bài toán trên xuất phát từ một hằng đẳng thức quen thuộc là (x2 + y2 ) 2 = (x2 − y2 ) 2 + (2xy)2 . Và điểm mấu chốt của bài toán là tính chất f (x2 ) = (f(x))2 , để suy ra f(x) ≥ 0 khi x ≥ 0. Ví dụ 3.4. (China 1996) Cho hàm số f : R → R thỏa mãn điều kiện: f(x3 + y3 ) = (x + y)(f2 (x) − f(x)f(y) + f2 (y)), ∀x, y ∈ R. Chứng minh rằng f(1996x) = 1996f(x), ∀x ∈ R. Giải a) Tính f(0) và thiết lập cho f(x). Cho x = y = 0 ta được f(0) = 0. Cho y = 0 ta được f(x3 ) = xf2 (x). Nhận xét: f(x) và x luôn cùng dấu. Từ đây ta có f(x) = x 1 3 f2 (x 1 3 ). b) Thiết lập tập hợp tất cả các giá trị a mà f(ax) = af(x). Đặt S = {a 0 : f(ax) = af(x), ∀x ∈ R}. * Rõ ràng 1 ∈ S. * Ta chứng tỏ nếu a ∈ S thì a 1 3 ∈ S. Thật vậy axf2 (x) = af(x3 ) = f(ax3 ) = f (a 1 3 x)3 = a 1 3 x.f2 (a 1 3 x) ⇒ a 2 3 f2 (x) = f2 (a 1 3 x) ⇒ a 1 3 f(x) = f(a 1 3 x) * Nếu a, b ∈ S thì a + b ∈ S. Thật vậy f ((a + b)x) = f (a 1 3 x 1 3 )3 + (b 1 3 x 1 3 )3 = (a 1 3 + b 1 3 ) h f2 (a 1 3 x 1 3 ) − f(a 1 3 x 1 3 ).f(b 1 3 x 1 3 ) + f2 (b 1 3 x 1 3 ) i = (a 1 3 + b 1 3 ) h a 2 3 − a 1 3 b 1 3 + b 2 3 i x 1 3 f2 (x 1 3 ) = (a + b)f(x). Bằng quy nạp ta chứng tỏ mọi n ∈ N đều thuộc S. Và bài toán ra là trường hợp đặc biệt với n = 1996. GV: Trần Minh Hiền. . . . . .PTH bồi dưỡng học sinh giỏi . . . . . .Trường THPT chuyên Quang Trung www.VNMATH.com

31. 3 PHƯƠNG PHÁP QUY NẠP Nhận xét: 1. Nếu chỉ đơn thuần chứng minh kết quả của bài toán thì có thể quy nạp trực tiếp. Bằng cách khảo sát như trên ta sẽ thấy hết được tất cả các giá trị của a 0 mà f(ax) = af(x). 2. Do yêu cầu “đặc biệt” của bài toán, nên tự nhiên ta sẽ nghĩ ngay là có thể chứng minh điều đó đúng với mọi số tự nhiên, và qua đó, sẽ nghĩ ngay đến hướng quy nạp. 3. Việc suy ra dấu của f(x) cùng dấu với x là quan trọng, nó giúp ta triệt tiêu bình phương mà không cần xét dấu, đây cũng là một điều đáng lưu ý trong rất nhiều bài tập khác. 4. Bài toán trên rất có thể xuất phát từ hằng đẳng thức x3 + y3 = (x + y) (x2 − xy + y2 ). Ví dụ 3.5. Tìm tất cả các hàm f : Z → Z thỏa mãn: f(x3 + y3 + z3 ) = f3 (x) + f3 (y) + f3 (z), ∀x, y, z ∈ Z Hint: 1. Tính f(0) và chứng minh f là hàm lẻ. 2. Chứng tỏ f(2) = 2f(1), f(3) = 3f(1). Chứng minh bằng quy nạp f(n) = nf(1), ∀n ∈ Z 3. Trong chứng minh chuyển từ n = k ≥ 0 sang n = k +1, ta sử dụng hằng đẳng thức sau: Nếu k chẵn thì k = 2t, ta có: (2t + 1)3 + 53 + 13 = (2t − 1)3 + (t + 4)3 + (4 − t)3 khi k = 2t và nếu k lẻ thì k = 2t − 1 khi đó n = 2t luôn được viết dưới dạng 2t = 2j (2i + 1), và đẳng thức trên chỉ cần nhân cho 23j Ví dụ 3.6. Tìm tất cả các hàm f : N → N thỏa mãn các điều kiện: f(1) 0 và f(m2 + n2 ) = f2 (m) + f2 (n), ∀m, n ∈ N Hint: 1. Tính f(0) ⇒ f(m2 + n2 ) = f(m2 ) + f(n2 ) 2. Chứng minh f(n) = n, ∀n ≤ 10. Với n 10 ta sử dụng các đẳng thức sau: (5k + 1)2 + 22 = (4k + 2)2 + (3k − 1)2 (5k + 2)2 + 12 = (4k + 1)2 + (3k + 2)2 (5k + 3)2 + 12 = (4k + 3)2 + (3k + 1)2 (5k + 4)2 + 22 = (4k + 2)2 + (3k + 4)2 (5k + 5)2 = (4k + 4)2 + (3k + 3)2 GV: Trần Minh Hiền. . . . . .PTH bồi dưỡng học sinh giỏi . . . . . .Trường THPT chuyên Quang Trung www.VNMATH.com

32. 4 KHAI THÁC TÍNH CHẤT ĐƠN ÁNH, TOÀN ÁNH, SONG ÁNH, CHẴN LẺ CỦA HÀM SỐ 4 Khai thác tính chất đơn ánh, toàn ánh, song ánh, chẵn lẻ của hàm số Trước tiên ta nhắc lại các khái niệm cơ bản này. a) Nếu f : R → R là đơn ánh thì từ f(x) = f(y) ta suy ra được x = y. b) Nếu f : R → R là toàn ánh thì với mỗi y ∈ R, tồn tại x ∈ R để f(x) = y. c) Nếu f : R → R là song ánh thì ta có cả hai đặc trưng trên. Nếu một hàm số mà đơn ánh chúng ta rất hay dùng thủ thuật tác động f vào cả hai vế, nếu một hàm f toàn ánh ta hay dùng: Tồn tại một số b sao cho f(b) = 0, sau đó tìm b. Nếu quan hệ hàm là hàm bậc nhất của biến ở vế phải thì có thể nghĩ tới hai quan hệ này. Ví dụ 4.1. Tìm tất cả các hàm số f : Q → Q thỏa mãn f (f(x) + y) = x + f(y), ∀x, y ∈ Q. Giải Nhận xét, hàm đồng nhất 0 không thỏa mãn bài toán. Xét f(x) ≡ 0. a) f đơn ánh, thật vậy, nếu f(x1) = f(x2) thì f (f (x2) + y) = f (f (x2) + y) → x1 + f(y) = x2 + f(y) → x1 = x2. b) f toàn ánh, thật vậy, vì tồn tại y0 sao cho f(y0) = 0. Do đó vế phải của điều kiện là một hàm số bậc nhất của x nên có tập giá trị là Q. c) Tính f(0), cho x = y = 0 và sử dụng tính đơn ánh ta được f (f(0)) = f(0) → f(0) = 0. Từ đó thay y = 0 ta được f (f(x)) = x, ∀x ∈ Q. d) Thay x bởi f(x) và sử dụng kết quả trên(và điều này đúng cho với mọi x ∈ Q vì f là toán ánh) thì f(x + y) = f(x) + f(y), ∀x, y ∈ Q. Từ đây ta được f(x) = ax thay vào bài toán ta nhận f(x) ≡ x hoặc f(x) ≡ −x trên Q. Nhận xét: Nếu yêu cầu bài toán trên tập R thì cần thêm tính chất đơn điệu hoặc liên tục. Cụ thể, các bạn có thể giải lại bài toán sau (THTT, 2010): Tìm tất cả các hàm số liên tục f : R → R thỏa mãn điều kiện f (x + f(y)) = 2y + f(x), ∀x, y ∈ R. Ví dụ 4.2. Tìm tất cả các hàm số f : R → R thỏa mãn f (xf(y) + x) = xy + f(x), ∀x, y ∈ R. GV: Trần Minh Hiền. . . . . .PTH bồi dưỡng học sinh giỏi . . . . . .Trường THPT chuyên Quang Trung www.VNMATH.com

33. 4 KHAI THÁC TÍNH CHẤT ĐƠN ÁNH, TOÀN ÁNH, SONG ÁNH, CHẴN LẺ CỦA HÀM SỐ Giải Thay x = 1 vào điều kiện hàm ta được f (f(y) + 1) = y + f(1), ∀y ∈ R. Từ đây suy ra f là một song ánh. Lấy x = 1, y = 0 ta được f (f(0) + 1) = f(1) → f(0) = 0 do fđơn ánh. Bây giờ với x = 0, đặt y = − f(x) x thay vào điều kiện hàm ta được f (xf(y) + x = 0 = f(0)) → xf(y) = x do fđơn ánh, hay f(y) = −1, tức là f ‚ − f(x) x Œ = f(y) = −1 = f(b), với b là một số thực nào đó(do f là một toàn ánh). Vậy f(x) = −bx, ∀x = 0. Kết hợp với f(0) = 0 thì viết gộp thành f(x) = −bx, ∀x ∈ R. Thay vào điều kiện hàm số ta có được hai hàm thỏa mãn là f(x) ≡ x và f(x) ≡ −x. Nhận xét: Bài toán này có thể giải bằng cách thế biến như sau mà không cần dùng đến tính song ánh của hàm số. Thay x = 1 ta được f (f(y) + 1) = y + f(1), ∀y ∈ R. Ví dụ 4.3. (Đề nghị IMO 1988) Xác định hàm số f : N → N thỏa mãn điều kiện sau: f(f(n) + f(m)) = m + n, ∀m, n ∈ N. (14) Giải a) Trước tiên ta kiểm tra f đơn ánh. Thật vậy giả sử f(n) = f(m), khi đó f (2f(n)) = f (f(n) + f(n)) = 2n, và f (2f(n)) = f (f(m) + f(m)) = 2m. Do đó m = n, nên f đơn ánh. b) Ta tính f (f(n)) theo các bước sau: cho m = n = 0 trong (14) thì ta được f (2f(0)) = 0, lại cho m = 2f(0) vào trong (14) thì ta được f (f(n)) = n + 2f(0). GV: Trần Minh Hiền. . . . . .PTH bồi dưỡng học sinh giỏi . . . . . .Trường THPT chuyên Quang Trung www.VNMATH.com

34. 4 KHAI THÁC TÍNH CHẤT ĐƠN ÁNH, TOÀN ÁNH, SONG ÁNH, CHẴN LẺ CỦA HÀM SỐ c) Tác động f vào cả hai vế của (14) và sử dụng kết quả trên, ta được f (f (f(n) + f(m))) = f(n) + f(m) + 2f(0). Ngoài ra theo quan hệ đề bài thì f (f (f(n) + f(m))) = f(n + m). Từ đây ta có f(n + m) = f(n) + f(m) + 2f(0). Cho m = n = 0 thì f(0) = 0, do đó quan hệ trên trở thành hàm cộng tính. Vậy f(n) = an. Thay vào quan hệ bài toán ta được f(n) = n, ∀n ∈ N. – Nhận xét: Quan hệ đơn ánh của bài toán này không cần thiết trong lời giải. Và bài toán này có thể chứng minh bằng quy nạp trên N. Cách 2. Nếu xét trên Z+ thì ta có thể chứng minh bằng quy nạp f(x) = x, ∀x ∈ N. Tức là, dùng phương pháp, ta chứng minh không còn tồn tại hàm số nào khác. Trước tiên ta tính f(1). Giả sử f(1) = t 1, đặt s = f(t − 1) 0. Nhận thấy rằng nếu f(m) = n thì f(2n) = f (f(m) + f(m)) = 2m. Như vậy f(2t) = 2, f(2s) = 2t − 2. Nhưng khi đó thì 2s + 2t = f (f(2s) + f(2t)) = f(2t) = 2 → t 1, điều này vô lý. Vậy f(1) = 1. Giả sử ta có f(n) = n thì f(n + 1) = f (f(n) + f(1)) = n + 1. Vậy f(n) = n, ∀n ∈ Z+ . Ví dụ 4.4. (Balkan 2000) Tìm tất cả các hàm số f : R → R thỏa mãn điều kiện: f (xf(x) + f(y)) = (f(x))2 + y, ∀x, y ∈ R. (15) Giải a) Ta tính f (f(y)) bằng cách cho x = 0 vào (15) ta được f (f(y)) = (f(0))2 + y, ∀y ∈ R. b) Chứng tỏ f đơn ánh. Thật vậy nếu f(y1) = f(y2) thì f (f(y1)) = f (f(y2)). Từ đây theo phần (a) thì f2 (0) + y1 = (f(0))2 + y2 ⇒ y1 = y2. c) Chứng tỏ f toàn ánh vì vế phải của (15) là một hàm bậc nhất của y nên có tập giá trị bằng R. Kết hợp hai điều trên ta thu được f là một song ánh từ R vào R. GV: Trần Minh Hiền. . . . . .PTH bồi dưỡng học sinh giỏi . . . . . .Trường THPT chuyên Quang Trung www.VNMATH.com

35. 4 KHAI THÁC TÍNH CHẤT ĐƠN ÁNH, TOÀN ÁNH, SONG ÁNH, CHẴN LẺ CỦA HÀM SỐ d) Tính f(0). Dựa vào tính toàn ánh thì phải tồn tại a ∈ R để f(a) = 0. Thay x = y = a vào (15) ta được f (af(a) + f(a)) = (f(a))2 + a ⇒ f(0) = a. Do f là một song ánh nên a = 0, tức f(0) = 0. Từ đây theo (a) thì f (f(x)) = x, ∀x ∈ R. Trong (15) cho y = 0 ta được f (xf(x)) = (f(x))2 , ∀x ∈ R. (16) Trong quan hệ trên, thay x bởi f(x) ta được(thay được đúng với mọi x ∈ R vì f là song ánh) f (f(x).f (f(x))) = , ∀x ∈ R. Chứng minh rằng f (f(x)) = x, ∀x ∈ R. Giải a) Làm xuất hiện f (f(x)). Cho y = x ta được f(2x) + f(2f(x)) = f (2f(x + f(x))) . (26) Thay x = f(x) trong vào trong (26) ta được f(2f(x)) + f(2f(f(x))) = f (2f(f(x) + f(f(x)))) . (27) Lấy (27) trừ cho (26) ta được f (2f (f(x))) − f(2x) = f (2f (f(x) + f (f(x)))) − f (2f (x + f(x))) . (28) GV: Trần Minh Hiền. . . . . .PTH bồi dưỡng học sinh giỏi . . . . . .Trường THPT chuyên Quang Trung www.VNMATH.com

45. 5 KHAI THÁC TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ b) Sử dụng tính chất hàm f là hàm giảm. Giả sử tồn tại x0 sao cho f (f(x0)) x0, khi đó 2f (f(x0)) 2×0. Do f là hàm giảm nên f (2f (f(x0))) f(2×0). Do đó vế trái của (28) nhỏ hơn 0. Vậy f (2f (f(x0) + f (f(x0)))) − f (2f (x0 + f(x0))) 0 ⇒ f (2f (f(x0) + f (f(x0)))) f (2f (x0 + f(x0))) . Lại do f là hàm giảm nên 2f (f(x0) + f (f(x0))) 2f (x0 + f(x0)) ⇒ f(x0) + f (f(x0)) x0 + f(x0) ⇒ f (f(x0)) x0. Điều này dẫn đến mâu thuẫn. Nếu tồn tại x0 sao cho f (f(x0)) x0 thì lập luận tương tự như trên ta cũng dẫn đến điều vô lý. Vậy f (f(x)) = x, ∀x ∈ R. Ví dụ 5.6. (Italy 2000) a) Tìm tất cả các hàm đơn điệu ngặt f : R → R thỏa mãn f (x + f(y)) = f(x) + y, ∀x, y ∈ R. b) Chứng minh rằng với mọi số nguyên n 1, không tồn tại hàm đơn điệu ngặt f : R → R sao cho f (x + f(y)) = f(x) + yn , ∀x, y ∈ R. Giải Hàm đơn điệu ngặt thì đơn ánh. Ngoài ra dễ thấy f là một song ánh. a) Thế x = y = 0 ta được f (f(0)) = f(0). Do f đơn ánh nên f(0) = 0. Từ đó ta được quan hệ f (f(x)) = x, ∀x ∈ R. Khi đó với mọi z ∈ R, thay y = f(z) vào quan hệ hàm ta được f(x + z) = f(x) + f(z), ∀x, z ∈ R. Từ tính chất cộng tính của hàm f và tính đơn điệu ngặt của f, suy ra f có dạng f(x) = ax. Thay vào hàm ban đầu ta được f(x) ≡ x hoặc f(x) ≡ −x là hai hàm thỏa mãn yêu cầu bài toán. Cách khác: Ta có thể kiểm tra trực tiếp hai hàm số này như sau. Xét trường hợp f là hàm tăng, giả sử tồn tại x0 ∈ R sao cho f(x0) x0, thì do f là hàm tăng nên f (f(x0)) f(x0) → x0 f(x0), vô lý, tương tự cho trường hợp f(x0) x0. Vậy f(x) ≡ x. Tương tự cho hàm giảm. GV: Trần Minh Hiền. . . . . .PTH bồi dưỡng học sinh giỏi . . . . . .Trường THPT chuyên Quang Trung www.VNMATH.com

48. 6 KHAI THÁC TÍNH CHẤT ĐIỂM BẤT ĐỘNG CỦA HÀM SỐ 6 Khai thác tính chất điểm bất động của hàm số Cho hàm số f : X → R. Điểm a ∈ X gọi là điểm cố định(điểm bất động, điểm kép) của hàm số f nếu f(a) = a. Việc nghiên cứu các điểm bất động của một hàm số cũng cho ta một số thông tin về hàm số đó. Điểm bất động a của hàm số f chính là chu trình bậc 1 của điểm a qua ánh xạ f Ví dụ 6.1. (IMO 1983) Tìm các hàm số f : R+ → R+ thỏa mãn hai điều kiện: limx→∞ f(x) = 0 và f(xf(y)) = yf(x), ∀x, y ∈ R+ Giải a) Tính f(1). Cho x = y = 1, ta được f (f(1)) = f(1). Lại cho y = f(1) ta được f (xf (f(1))) = f(1)f(x) ⇒ f (xf(1)) = f(1)f(x). Mặt khác f (xf(1)) = f(x) nên ta được f(x) = f(x)f(1) ⇒ f(1) = 1(do f(x) 0). b) Điểm cố định của hàm số Cho x = y vào quan hệ hàm ta được f (xf(x)) = xf(x), ∀x ∈ R+ . Suy ra xf(x) là điểm bất động của hàm số f. c) Một số đặc điểm của tập điểm cố định. Nếu x và y là hai điểm cố định của hàm số, thì f(xy) = f (xf(y)) = yf(x) = xy. Chứng tỏ xy cũng là điểm bất động của hàm số. Như vậy tập các điểm bất động đóng với phép nhân. Hơn nữa nếu x là điểm bất động thì 1 = f(1) = f 1 x f(x) = xf 1 x ⇒ f 1 x = 1 x . Nghĩa là 1 x cũng là điểm bất động của hàm số. Như vậy tập các điểm bất động đóng với phép nghịch đảo. Như vậy ngoài 1 là điểm bất động ra, nếu có điểm bất động nào khác thì hoặc điểm bất động này lớn hơn 1, hoặc nghịch đảo của nó lớn hơn 1. Do đó lũy thừa nhiều lần của điểm này lớn hơn 1 cũng sẽ là điểm bất động. Điều này trái với điều kiện thứ 2 trong quan hệ hàm. d) Vậy 1 là điểm bất động duy nhất của hàm số, do xf(x) là điểm bất động của hàm số với mọi x 0 nên từ tính duy nhất ta suy ra f(x) = 1 x . Dễ thấy hàm số này thỏa mãn yêu cầu bài toán. GV: Trần Minh Hiền. . . . . .PTH bồi dưỡng học sinh giỏi . . . . . .Trường THPT chuyên Quang Trung www.VNMATH.com

49. 6 KHAI THÁC TÍNH CHẤT ĐIỂM BẤT ĐỘNG CỦA HÀM SỐ Ví dụ 6.2. (IMO 1994) Giả sử S là tập hợp các số thực lớn hơn −1. Tìm tất cả các hàm số f : S → S sao cho các điều kiện sau được thỏa mãn a) f[x + f(y)) + xf(y)] = y + f(x) + yf(x) ∀x, y ∈ S b) f(x) x là hàm thực sự tăng với −1 x 0 và với x 0 . Giải a) Tìm điểm bất động. Từ điều kiện (b) ta nhận thấy phương trình điểm bất động f(x) = x có nhiều nhất là 3 nghiệm(nếu có): một nghiệm nằm trong khoảng (−1; 0), một nghiệm bằng 0, một nghiệm nằm trong khoảng (0; +∞). b) Nghiên cứu điểm bất động của hàm số. Giả sử u ∈ (−1; 0) là một điểm bất động của f. Trong điều kiện (a) cho x = y = u ta được f(2u + u2 ) = 2u + u2 . Hơn nữa 2u + u2 ∈ (−1; 0) và 2u + u2 là một điểm bất động nữa của hàm số trong khoảng (−1; 0). Theo nhận xét trên thì phải có 2u + u2 = u ⇒ u = −u2 ∈ (−1; 0). Hoàn toàn tương tự, không có điểm bất động nào nằm trong khoảng (0; +∞). Như thế 0 là điểm bất động duy nhất của hàm số(nếu có). c) Kết luận hàm Cho x = y vào (a) ta được f (x + f(x) + xf(x)) = x + f(x) + xf(x), ∀x ∈ S. Như vậy với mọi x ∈ S thì x + (1 + x)f(x) là điểm bất động của hàm số. Theo nhận xét trên thì x + (1 + x)f(x) = 0, ∀x ∈ S ⇒ f(x) = − x 1 + x , ∀x ∈ S. Thử lại thấy hàm này thỏa mãn yêu cầu bài toán. Ví dụ 6.3. (IMO 1996) Tìm tất cả các hàm số f : N → N sao cho: f(m + f(n)) = f(f(m)) + f(n), ∀m, n ∈ N. Giải a) Tính f(0). Cho m = n = 0 thì ta có f (f(0)) = f (f(0)) + f(0) ⇒ f(0) = 0. Từ đây lại cho n = 0 thì f (f(m)) = f(m), ∀m ∈ N. Vậy ta có quan hệ hàm như sau 8 : f(m + f(n)) = f(m) + f(n) (1) f(0) = 0 (2) . GV: Trần Minh Hiền. . . . . .PTH bồi dưỡng học sinh giỏi . . . . . .Trường THPT chuyên Quang Trung www.VNMATH.com

50. 6 KHAI THÁC TÍNH CHẤT ĐIỂM BẤT ĐỘNG CỦA HÀM SỐ b) Nhận thấy hàm f(0) ≡ 0 thỏa mãn yêu cầu bài toán. c) Tìm điểm cố định của hàm số. Nếu f không đồng nhất 0. Thì từ quan hệ f (f(m)) = f(m), ∀m ∈ N suy ra với mọi m ∈ N thì f(m) là điểm cố định của hàm số với m ∈ N. d) Tính chất của các điểm bất động. Nếu a và b là hai điểm bất động của hàm số f thì f(a + b) = f (a + f(b)) = f (f(a)) + f(b) = f(a) + f(b) = a + b. Vậy tập các điểm bất động bất biến qua phép cộng. e) Tập hợp các điểm bất động của f. Gọi a là điểm bất động khác 0 bé nhất của hàm số f. – Nếu a = 1, tức là f(1) = 1, thì dễ thấy rằng f(2) = 2 (bằng cách cho m = n = 1). Và áp dụng phương pháp quy nạp ta suy ra f(n) = n∀n ∈ N. – Nếu a 1, tức là f(a) = a. Bằng phương pháp quy nạp ta cũng chứng tỏ được là f(ka) = ka, ∀k ≥ 1. Ta chứng minh tập các điểm bất động động đều có dạng ka, ∀k ≥ 1(lưu ý là a là điểm bất động nhỏ nhất của hàm số). Thật vậy nếu n là điểm bất động khác thì n = ka + r(0 ≤ r a), khi đó theo (1) và tính chất điểm bất động của ka, ta có n = f(n) = f(ka + r) = f (r + f(ka)) = f(r) + f(ka) = f(r) + ka ⇒ f(r) = n − ka = r. Vì r a mà r lại là điểm bất động, a là điểm bất động nhỏ nhất, nên r = 0. Chứng tỏ các điểm bất động đều có dạng ka, ∀k ≥ 1 (*). f) Xây dựng hàm f. Vì {f(n) : n ∈ N} là tập các điểm bất động của hàm f. Vậy thì với i a thì do (*) nên ta có f(i) = nia với n0 = 0, ni ∈ N. Lấy số nguyên dương n bất kỳ thì ta có thể viết n = ka + i(0 ≤ i a). Theo quan hệ đầu bài thì f(n) = f(i + ka) = f (i + f(ka)) = f(i) + ka = nia + ka = (ni + k)a. Ta kiểm chứng hàm f như vậy thỏa mãn yêu cầu bài toán. Thật vậy, với m = ka + i, n = la + j , 0 ≤ i, j a thì f (m + f(n)) = f (la + j + f (ka + i)) = ka + i + f (f(la + i)) . GV: Trần Minh Hiền. . . . . .PTH bồi dưỡng học sinh giỏi . . . . . .Trường THPT chuyên Quang Trung www.VNMATH.com

51. 6 KHAI THÁC TÍNH CHẤT ĐIỂM BẤT ĐỘNG CỦA HÀM SỐ Ví dụ 6.4. (AMM, E984) Tìm tất cả các hàm số f : R → R sao cho f(f(x)) = x2 − 2, ∀x ∈ R. Giải Ta chứng minh một kết quả tổng quát hơn: Cho S là một tập hợp và g : S → S là một hàm số có chính xác 2 điểm cố định {a, b} và g ◦ g có chính xác 4 điểm cố định {a, b, c, d}. Thì không tồn tại hàm số f : S → S để g = f ◦ f. Chứng minh Giả sử g(c) = y. Thì c = g (g(c)) = g(y), nên y = g(c) = g (g(y)). Do vậy y là một điểm cố định của g ◦ g. Nếu y = a thì a = g(a) = g(y) = c, dẫn đến mâu thuẫn. Tương tự cho y = b sẽ dẫn đến mâu thuẫn là c = b. Nếu y = c thì c = g(y) = g(c), tức c là điểm cố định của g, mâu thuẫn. Từ đó suy ra y = d, tức là g(c) = d, và tương tự thì g(d) = c. Giả sử tồn tại f : S → S sao cho f ◦ f = g. Thì f ◦ g = f ◦ f ◦ f = g ◦ f. Khi đó f(a) = f (g(a)) = g (f(a)), nên f(a) là một điểm cố định của g. Bằng việc kiểm tra từng trường hợp ta kết luận f{a, b} = {a, b}, f{a, b, c, d} = {a, b, c, d}. Xét f(c). Nếu f(c) = a, thì f(a) = f (f(c)) = g(c) = d, mâu thuẫn do f(a) nằm trong {a, b}. Tương tự cũng không thể xảy ra f(c) = b. Ngoài ra cũng không thể có f(c) = c vì c không là điểm cố định của g. Do vậy chỉ có khả năng là f(c) = d. Nhưng khi đó thì f(d) = f (f(c)) = g(c) = d, mâu thuẫn, vì điều này không thể xảy ra do d không phải là điểm cố định của g. Do vậy không thể tồn tại hàm f thỏa yêu cầu bài toán. Quay trở lại bài toán, bài toán là trường hợp đặc biệt của hàm g(x) = x2 − 2, có hai điểm cố định là −1 và 2, và g (g(x)) = (x2 − 2) 2 − 2 có các điểm cố định là −1, 2, −1 + √ 5 2 và −1 √ 5 2 . Áp dụng kết quả trên ta hoàn thành lời giải cho bài toán. GV: Trần Minh Hiền. . . . . .PTH bồi dưỡng học sinh giỏi . . . . . .Trường THPT chuyên Quang Trung www.VNMATH.com

Cách Viết Phương Trình Hóa Học Hay, Chi Tiết

Tính Theo Phương Trình Hóa Học

Bài Tập Cân Bằng Phương Trình Hóa Học Lớp 8 Có Đáp Án

Phương Trình Hóa Học Là Gì? Hướng Dẫn Cách Cân Bằng Phương Trình Hóa Học

Phương Trình Hóa Học Đầy Đủ Chi Tiết Nhất

Bạn đang đọc nội dung bài viết Kỹ Thuật Giải Phương Trình Hàm trên website Techcombanktower.com. Hy vọng một phần nào đó những thông tin mà chúng tôi đã cung cấp là rất hữu ích với bạn. Nếu nội dung bài viết hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!

Yêu thích 2199 / Xu hướng 2299 / Tổng 2399 thumb
🌟 Home
🌟 Top