Đề Xuất 2/2023 # Hình Lăng Trụ Là Gì? Lăng Trụ Tam Giác Đều, Tứ Giác Đều, Lục Giác # Top 8 Like | Techcombanktower.com

Đề Xuất 2/2023 # Hình Lăng Trụ Là Gì? Lăng Trụ Tam Giác Đều, Tứ Giác Đều, Lục Giác # Top 8 Like

Cập nhật nội dung chi tiết về Hình Lăng Trụ Là Gì? Lăng Trụ Tam Giác Đều, Tứ Giác Đều, Lục Giác mới nhất trên website Techcombanktower.com. Hy vọng thông tin trong bài viết sẽ đáp ứng được nhu cầu ngoài mong đợi của bạn, chúng tôi sẽ làm việc thường xuyên để cập nhật nội dung mới nhằm giúp bạn nhận được thông tin nhanh chóng và chính xác nhất.

Để học tốt môn Toán lớp 12

VnDoc xin giới thiệu tới bạn đọc Hình lăng trụ là gì? Lăng trụ tam giác đều, tứ giác đều, lục giác. Nội dung tài liệu sẽ giúp các bạn học tốt Toán 12 hiệu quả hơn. Mời các bạn tham khảo.

Toán 12: Hình lăng trụ là gì? Lăng trụ tam giác đều, tứ giác đều, lục giác

Định nghĩa và tính chất hình lăng trụ, lăng trụ tam giác đều, lăng trụ tứ giác đều, lục giác

1. Hình lăng trụ

Định nghĩa: Hình lăng trụ là một đa diện gồm có hai đáy là hai đa giác bằng nhau và nằm trên hai mặt phẳng song song, các mặt bên là hình bình hành, các cạnh bên song song hoặc bằng nhau

Tính chất: Hình hộp là hình lăng trụ có đáy là hình bình hành

Thể tích: thể tích hình lăng trụ bằng diện tích của mặt đáy và khoảng cách giữa hai mặt đáy hoặc là chiều cao.

B: diện tích mặt đáy của hình lăng trụ

H: chiều cao của của hình lăng trụ

V: thể tích hình lăng trụ

2. Hình lăng trụ đều

Định nghĩa: Hình lăng trụ đều là hình lăng trụ đứng có đáy là đa giác đều.

Tính chất:

Hai đáy là hai đa giác đều bằng nhau do đó các cạnh đáy bằng nhau.

Cạnh bên vuông góc với mặt đáy.

Các mặt bên là các hình chữ nhật.

Ví dụ: Các lăng trụ đều thường gặp như là lăng trụ tam giác đều, lăng trụ tứ giác đều, lăng trụ ngũ giác đều, hình lăng trụ lục giác đều, …

3. Lăng trụ tam giác đều, lăng trụ tứ giác đều, lăng trụ ngũ giác đều, lăng trụ lục giác đều

Định nghĩa:

Hình lăng trụ tam giác đều là hình lăng trụ có hai đáy là 2 hình tam giác đều.

Hình lăng trụ tứ giác đều là hình lăng trụ đều có đáy là hình vuông.

Hình lăng trụ ngũ giác đều là hình lăng trụ đều có đáy là hình ngũ giác.

Hình lăng trụ lục giác đều là hình lăng trụ đều có đáy là lục giác.

Hình lăng trụ lục giác đều Hình lăng trụ ngũ giác đều Hình lăng trụ tứ giác đều Hình lăng trụ tam giác đều

4. Bài tập trắc nghiệm Lăng trụ tam giác đều, lăng trụ tứ giác đều, lăng trụ ngũ giác đều, lăng trụ lục giác đều

Câu 1: Các mặt bên của một bát diện đều là hình gì?

Câu 2: Hình lăng trụ đứng ABC.A’B’C’ có đáy là tam giác vuông tại A, cạnh AB = 1, BC = , cạnh bên A’A = . Thể tích khối lăng trụ đó là:

Câu 3: Cho lăng trụ đứng ABC.A’B’C’. Gọi H là trực tâm của tam giác ABC. Thể tích khối lăng trụ được tính theo công thức nào sau đây?

Câu 4: Xét các mệnh đề sau:

1. Hai khối đa diện đều có thể tích bằng nhau là hai đa diện bằng nhau

2. Hai khối đa diện bằng nhau thì có thể tích bằng nhau

3. Hai khối chóp có thể tích bằng nhau thì có chiều cao bằng nhau

5. Hai khối hộp chữ nhật có thể tích bằng nhau là hai đa diện bằng nhau

Có bao nhiêu mệnh đề sai trong các mệnh đề sau?

Câu 5: Một hình lăng trụ đứng tam giác có tất cả các cạnh bằng a. Thể tích khối lăng trụ đó bằng:

Câu 6: Cho khối lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông cân tại A, cạnh BC = . Thể tích khối lăng trụ biết A’B = 3a

Câu 7: Cho khối lăng trụ ABC.A’B’C’. Nếu tam giác A’Bc có diện tích bằng 1 và khoảng cách từ A đến mặt phẳng (A’BC) bằng 2 thì thể tích khối lăng trụ đó là:

Câu 8: Lăng trụ ABC.A’B’C’ có thể tích bằng , mặt bên ABB’A’ có diện tích bằng . Khoảng cách từ C đến mặt phẳng (ABA’) là:

Câu 9: Cho lăng trụ tam giác đều có tất cả các cạnh bằng a và có thể tích bằng 9/4. Tính a?

A. 3

B. 9

Câu 10: Khối lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông cân tại A, AB = a. Nếu thể tích của khối lăng trụ bằng

Toán Học: Lăng Trụ Tam Giác Đều

1) Hình lăng trụ và hình lăng trụ đứng.

a) Định nghĩa và công thức về hình lăng trụ

Trong toán học không gian, hình lăng trụ được xác định là một loại đa diện. Loại đa diện này có 2 mặt đáy là các đa giác phẳng. Còn cách mặt còn lại của hình lăng trụ là các hình bình hành.

Theo công thức toán học, thể tích của hình lăng trụ sẽ được tính như sau:

V=B.h

Trong đó:

V là thể tích hình lăng trụ.

B là diện tích của mặt đáy.

h là khoảng cách giữa 2 mặt đáy/chiều cao hình lăng trụ.

b) Định nghĩa và công thức về hình lăng trụ đứng

Hình lăng trụ đứng được xác định là hình lăng trụ có cạnh bên và mặt đáy vuông góc với nhau.

Thuật ngữ: Thông thường thì ta gặp hình lăng trụ đều có đáy là tam giác hoặc hình vuông trong nhiều bài toán. Người ta thường gọi tắt trường hợp đó với các thuật ngữ là hình lăng trụ tam giác đều, lăng trụ tứ giác đều.

Các tính chất cơ bản của hình lăng trụ đứng bao gồm:

Mặt bên của hình lăng trụ đứng là hình chữ nhật.

Tất cả các mặt bên của hình lăng trụ đứng đều vuông góc với đáy.

Theo công thức toán học, diện tích của hình lăng trụ đứng được tính như sau:

Diện tích xung quanh của lăng trụ đứng = Tổng diện tích các mặt bên = (Chu vi đáy)x(Chiều cao)

Diện tích toàn phần của lăng trụ đứng = Tổng diện tích các mặt bên và diện tích 2 đáy.

Cũng theo công thức toán học, diện tích hình lăng trụ đứng vẫn được tính theo công thức:

V = B.h

Trong đó,

V là thể tích hình lăng trụ.

B là diện tích của mặt đáy.

h là chiều cao hình lăng trụ.

2) Hình lăng trụ tam giác đều

a) Định nghĩa hình lăng trụ tam giác đều

Hình lăng trụ tam giác đều được xác định là hình lăng trụ đứng với đáy là tam giác đều.

Hình mô tả của hình lăng trụ tam giác đều:

Như vậy, hình lăng trụ tam giác đều sẽ có các tính chất cơ bản sau:

Hai đáy là hai tam giác đều và bằng nhau.

Các mặt bên là các hình chữ nhật bằng nhau.

Các mặt bên và hai đáy vuông góc với nhau.

b) Các công thức toán học của lăng trụ tam giác đều

Theo toán học, lăng trụ tam giác đều có các công thức như sau:

Trong đó, a là chiều dài cạnh đáy của lăng trụ tam giác đều.

Diện tích xung quanh của lăng trụ tam giác đều = Tổng diện tích các mặt bên = (Chu vi đáy) x (Chiều cao) : S = 3.a.h.

Diện tích toàn phần của lăng trụ tam giác đều = Tổng diện tích các mặt bên và diện tích 2 đáy: S = 3.a.h +

Trong đó, a là chiều dài cạnh đáy của lăng trụ tam giác đều, h là chiều cao của lăng trụ tam giác đều.

Thể tích của lăng trụ tam giác đều = (Diện tích đáy) x (Chiều cao): V =

Trong đó, a là chiều dài cạnh đáy của lăng trụ tam giác đều, hi là chiều cao của lăng trụ tam giác đều.

c) Một số bài tập về hình lăng trụ tam giác đều

Bài tập 1: Cho hình lăng trụ tam giác đều ABC.A’B’C’ (đáy là tam giác ABC và A’B’C’) với chiều dài cạnh đáy AB của hình lăng trụ này là 4 cm. Đồng thời, biết được diện tích của hình tam giác A’BC là 8 cmHãy xác định chiều cao và thể tích của khối lăng trụ này.

Bài tập 2: Cho hình lăng trụ tam giác đều ABC.A’B’C’ (đáy là tam giác ABC và A’B’C’) với chiều cao AA’ của hình lăng trụ là 2 cm và diện tích của hình tam giác A’BC là 8 cmHãy xác định chiều dài cạnh đáy, diện tích đáy, diện tích toàn phần và thể tích của khối lăng trụ này.

Bài tập 3:

Tính thể tích V của khối lăng trụ tam giác đều ABC.A’B’C’ có AA′=BC=a.AA′=BC=a.

A. V=a33√12V=a3312

B. V=a33√4V=a334

C. V=a32√6V=a326

D. V=a33

Đáp án đúng: B

Lý giải: ABC là tam giác đều cạnh nên: SABC=a23√4.SABC=a234.

Khi đó VABC.A′B′C′=SABC.AA′=a33√4.VABC.A′B′C′=SABC.AA′=a334.

Bài tập 4: Tính thể tích của khối lăng trụ tam giác đều có tất cả các cạnh đều bằng a.

A. a32a32

B. a33√2a332

C. a33√4a334

D. a33√12a3312

Đáp án đúng: C

Lý giải: Khối lăng trụ của đáy là tam giác đều cạnh a, chiều cao h=a. Nên suy ra có thể tích là: V=Sday.h=a23√4.a=a33√4

Bài tập 5: Cho hình hộp chữ nhật ABCD.A’B’C’D’ với AB=3cm; AD=6cm và độ dài đường chéo AC’=9cm . Tính thể tích V của hình hộp ABCD.A’B’C’D’?

A. V=108cm3V=108cm3

B. V=81cm3V=81cm3

C. V=102cm3V=102cm3

D. V=90cm3V=90cm3

Đáp án đúng: A

Lý giải: Ta có: AC=BD=AB2+AD2−−−−−−−−−−√=35√AC=BD=AB2+AD2=35 CC′=AC′2−AC2−−−−−−−−−−√=6CC′=AC′2−AC2=6

Vậy thể tích hình hộp là:VABCD.A′B′C′D′=3.6.6=108

Hình Chóp Đều Là Gì? Hình Chóp Đều Tam Giác, Tứ Giác Và Cách Tính Thể Tích

Số lượt đọc bài viết: 132.057

Định nghĩa hình chóp đều là gì?

à hình chóp có các mặt bên là Hình chóp đều (hình chóp đa giác đều) l tam giác cân, và đáy là hình đa giác đều (tam giác đều, hình vuông,…)

Tính chất: Chân đường cao của hình chóp đa giác đều là tâm của đáy.

Như vậy, để một hình chóp là hình chóp đều cần thỏa mãn hai điều kiện sau đây:

Đáy của hình chóp đó là đa giác đều (tam giác đều, hình vuông, …)

Chân đường cao của hình chóp chính là tâm của đáy

Tâm của tam giác đều chính là giao điểm 3 đường trung tuyến, cũng là đường cao, trung trực và phân giác trong.

Tâm của hình vuông chính là giao điểm hai đường chéo của nó.

Hình chóp tam giác đều chính là hình chóp đều mà có đáy là tam giác (mặt bên là tam giác cân, chưa đều).

Hình chóp tứ giác đều chính là hình chóp đều mà có đáy là tứ giác (lúc này đáy là hình vuông, mặt bên là tam giác cân).

Công thức tính thể tích hình chóp đều

Thể tích hình chóp đều: (V = frac{1}{3}.S.h)

Trong đó: S là diện tích đáy, h là chiều cao

Thể tích hình chóp cụt đều: (V = frac{1}{3}.h.(B + B’ + sqrt{B.B’}))

B và B’ lần lượt là diện tích của đáy lớn và đáy nhỏ của hình chóp cụt đều.

h là chiều cao (khoảng cách giữa 2 mặt đáy).

Diện tích xung quanh của hình chóp đều

Ta có S toàn phần của hình chóp sẽ bằng tổng của S xung quanh và S đáy.

Với hình chóp thì để tính được diện tích xung quanh, ta cần tính tổng của các mặt bên.

Muốn tính diện tích xung quanh của hình chóp cụt đều, cần tính S một mặt bên rồi nhân với số mặt bên, hoặc ta lấy S xung quanh của hình chóp đều lớn trừ đi S xung quanh của hình chóp đều nhỏ.

Lý thuyết hình chóp tam giác đều là gì?

Định nghĩa hình chóp tam giác đều là gì?

Hình chóp tam giác đều là hình chóp có đáy là tam giác đều, các mặt bên (hoặc cạnh bên) bằng nhau.

Tất cả các cạnh bên bằng nhau

Tất cả các mặt bên là các tam giác cân bằng nhau

Chân đường cao trùng với tâm mặt đáy (Tâm đáy là trọng tâm tam giác ABC)

Tất cả các góc tạo bởi cạnh bên và mặt đáy đều bằng nhau

Tất cả các góc tạo bởi các mặt bên và mặt đáy đều bằng nhau.

***Lưu ý:

Tâm của tam giác đều là giao điểm 3 đường trung tuyến, cũng là đường cao, trung trực và phân giác trong.

Tâm của hình vuông chính là giao điểm hai đường chéo.

Cách tính thể tích hình chóp tam giác đều SABC là (V_{SABC} =frac{1}{3}.S_{Delta ABC}.SO)

Trong đó: (S_{Delta ABC}) là diện tích đáy tam giác đều ABC.

SO là đường cao kẻ từ S xuống tâm O mặt đáy ABC.

Ví dụ 1: Cho hình chóp tam giác đều SABC cạnh đáy bằng a và cạnh bên bằng 2a. Chứng minh rằng chân đường cao kẻ từ S của hình chóp là tâm của tam giác đều ABC. Tính thể tích chóp đều SABC .

Tam giác ABC đều nên tam giác SAO vuông có: (SO^{2}=SA^{2}-OA^{2}=frac{11a^{2}}{3})

Lý thuyết hình chóp tứ giác đều là gì?

Định nghĩa hình chóp tứ giác đều là gì?

là hình chóp có đáy là Hình chóp tứ giác đềuhình vuông và đường cao của chóp đi qua tâm đáy (giao của 2 đường chéo hình vuông)

Đáy là hình vuông.

Tất cả các cạnh bên bằng nhau.

Tất cả các mặt bên là các tam giác cân bằng nhau.

Chân đường cao trùng với tâm mặt đáy.

Tất cả các góc tạo bởi cạnh bên và mặt đáy bằng nhau.

Tất cả các góc tạo bởi các mặt bên và mặt đáy đều bằng nhau.

Thể tích hình chóp tứ giác đều SABCD là: (V=frac{1}{3}.S_{ABCD}.SO) Trong đó: (S_{ABCD}) là diện tích hình vuông ABCD

SO là đường cao kẻ từ O xuống tâm đáy ABCD

Ví dụ 2: Cho khối chóp tứ giác SABCD có tất cả các cạnh có độ dài bằng a. Chứng minh rằng SABCD là chóp tứ giác đều. Tính thể tích khối chóp SABCD.

Ta có SA = SB = SC = SD nên OA = OB = OC = OD

Phân biệt hình chóp tam giác đều và hình chóp tứ giác đều

Hình chóp tam giác đều theo đình nghĩa là hình chóp đều có đáy là tam giác (mặt bên là tam giác cân, chưa đều).

Hình chóp tứ giác đều theo định nghĩa là hình chóp đều có đáy là tứ giác (lúc này đáy là hình vuông, mặt bên là tam giác cân).

Mối liên hệ giữa hình chóp tam giác đều và tứ diện đều là gì?

Hình chóp tam giác đều có cạnh bên chưa chắc bằng cạnh đáy, chóp tam giác đều có thêm điều kiện cạnh bên bằng cạnh đáy là tứ diện đều.

Hình tứ diện đều là một hình chóp tam giác đều đặc biệt (có thêm cạnh bên bằng cạnh đáy).

Hình Chóp Tam Giác Đều Là Gì? Hình Ảnh Và Bài Toán Mẫu

Có thể các bạn đã biết tới tên gọi hình chóp tam giác đều nhưng chưa hiểu rõ phần kiến thức này, nhằm giúp độc giả nắm vững hơn về định nghĩa cũng như các kiến thức về chóp tam giác đều, chúng tôi đã tổng hợp một số nội dung hữu ích để bạn tham khảo.

Hình chóp tam giác đều là gì? hình ảnh và bài toán mẫu

I. Tìm hiểu về hình chóp tam giác đều

1. Khái niệm chóp tam giác đều

– Hình chóp tam giác đều là hình chóp có đáy là tam giác đều, các mặt bên (cạnh bên) đều bằng nhau hay hình chiếu của đỉnh chóp xuống đáy trùng với tâm của tam giác đều.

2. Tính chất

– Đáy của hình chóp này là một tam giác đều– Các cạnh bên đều bằng nhau– Các mặt bên của hình chóp này là tam giác cân, không nhất thiết phải là tam giác đều.– Chân đường cao trùng với tâm đáy (tâm đáy là trọng tâm tam giác)– Góc được tạo bởi mặt bên và mặt đáy đều bằng nhau– Góc được tạo bởi cạnh bên và mặt đáy đều bằng nhau.

3. Phân biệt chóp tam giác đều và tứ diện đều

– Tứ diện đều cũng chính là chóp tam giác đều, tuy nhiên trong tứ diện đều, cạnh bên = cạnh đáy nói cách khác ở tứ diện đều tất cả các mặt đều là tam giác đều.

II. Hình ảnh hình chóp tam giác đều III. Cách vẽ chóp tam giác đều bằng 3 bước đơn giản

Bước 1: Vẽ mặt đáy hình chóp là tam giác đều ABC (nhưng không nhất thiết phải vẽ ba cạnh bằng nhau hoàn toàn mà có thể vẽ tam giác thường), AC vẽ nét đứt Vẽ hai đường trung tuyến CF và AI giao nhau tại O, O chính là chân đường cao trùng với tâm đáyBước 3: Từ O, dựng đường thẳng đứng, ta được đỉnh S, từ S nối với đỉnh A, B, C

– Công thức tính diện tích tam giác đều (mặt đáy):

S = (a2 x √3) : 4

– Công thức tính đường cao của tam giác đều:

h = (a x √3) : 2

– Công thức tính thể tích chóp tam giác đều:

V = 1/3. h. Sđáy

– Giải thích kí hiệu:

+ S là diện tích của tam giác đều+ S đáy là diện tích đáy+ a là 1 cạnh tam giác+ h là đường cao

Bài tập minh họa: Cho hình chóp tam giác đều SABC có đáy cạnh b, mặt bên tạo với đáy một góc 60 độ. Tính thể tích khối chóp SABC.

* Hướng dẫn:

+ Góc tạo bởi mặt bên (SBC) và mặt đáy (ABC) = góc SDI = 60 độ

Ta có: ID = 1/3. AD = 1/3. (b√3 : 2) = b : 2√3 (tính chất đường cao, đường trung tuyến AD trong tam giác đều)

+ Xét tam giác vuông SID có: tanSDI = đối/kề = SI : ID

Qua bài viết của chúng tôi, chắc hẳn bạn đọc đã hiểu rõ hơn về hình chóp tam giác đều là gì, cách vẽ đơn giản cũng như công thức và cách làm một số bài toán về chóp tam giác đều. Bạn cũng có thể chủ động tự giải một số bài tập dựa trên những gợi ý của chúng tôi. Bên cạnh đó các em cũng cần củng cố thêm kiến thức cách tính diện tích tam giác, đây là kiến thức cơ bản các em cần nắm vững.

https://thuthuat.taimienphi.vn/hinh-chop-tam-giac-deu-la-gi-hinh-anh-va-bai-toan-mau-35499n.aspx Ngoài ra các em tham khảo bài viết thêm bài viết công thức tính thể tích hình chóp trong chuỗi bài tập về hình chóp, hy vọng sẽ giúp ích nhiều cho các em trong chương trình học.

Bạn đang đọc nội dung bài viết Hình Lăng Trụ Là Gì? Lăng Trụ Tam Giác Đều, Tứ Giác Đều, Lục Giác trên website Techcombanktower.com. Hy vọng một phần nào đó những thông tin mà chúng tôi đã cung cấp là rất hữu ích với bạn. Nếu nội dung bài viết hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!