Đề Xuất 11/2022 # Giải Hệ Phương Trình Đại Số Tuyến Tính Bằng Excel / 2023 # Top 11 Like | Techcombanktower.com

Đề Xuất 11/2022 # Giải Hệ Phương Trình Đại Số Tuyến Tính Bằng Excel / 2023 # Top 11 Like

Cập nhật nội dung chi tiết về Giải Hệ Phương Trình Đại Số Tuyến Tính Bằng Excel / 2023 mới nhất trên website Techcombanktower.com. Hy vọng thông tin trong bài viết sẽ đáp ứng được nhu cầu ngoài mong đợi của bạn, chúng tôi sẽ làm việc thường xuyên để cập nhật nội dung mới nhằm giúp bạn nhận được thông tin nhanh chóng và chính xác nhất.

Sử dụng phương pháp ma trận để giải HPTTT là đơn giản nhất khi sử dụng Excel. HPTTT có dạng:

trong đó A là ma trận hệ số, x là vectơ biến số và b là vectơ kết quả.

HPTTT được biến đổi thành:

Xét hệ ba phương trình ba ẩn sau:

-8×1 + x2 + 2×3 = 0

5×1 + 7×2 – 3×3 = 10 (*)

2×1 + x2 – 2×3 = -2

Hệ ba phương trình này có thể viết dưới dạng ma trận sau:

-8 1 2 x1 0

5 7 3 x2 = 10

2 1 2 x3 -2

* Bước 1: nhập ma trận A vào các ô A6:C8

A6 -8 B6 1 C6 2

A7 5 B7 7 C7 -3

A8 2 B8 1 C8 -2

* Bước 2: nhập vectơ kết quả vào các ô E6:E8

E6 0 E7 10 E8 -2

* Bước 3: chọn các ô A11:C13, gõ công thức: =MINVERSE(A6:C8) và nhấn Ctrl+Shift+Enter để chèn công thức này vào cả vùng được lựa chọn ta thu được ma trận nghịch đảo của ma trận A.

* Bước 4: chọn các ô E11:E13, gõ công thức: =MMULT(A11:C13,E6:E8) và nhấn Ctrl+Shift+Enter để chèn công thức này vào cả vùng được lựa chọn ta thu được nghiệm của hệ ba phương trình trên trong các cột E11:E13 (xem hình 1)

Nghiệm của hệ phương trình là:

x1=1 x2=2 x3=3

Phương Pháp lặp Gauss-Seidel

Hình 2

Bản chất của phép lặp Gauss là nghiệm ở bước lặp i được dùng để tính cho bước lặp i+1 còn bản chất của phép lặp Gauss-Seidel là kết quả tính toán ẩn xk được đưa ngay vào tính toán ẩn xk+1 trong cùng một bước lặp i, đây là một bước cải tiến đáng kể phương pháp Gauss. Ta xem xét việc sử dụng Excel để giải HPTTT theo phương pháp Gauss-Seidel.

Biến đổi hệ phương trình trên ta có:

* Bước 1: chọn Tools – Options – Calculation tab và thay đổi Calculation từ Automatic thành Manual, bỏ chọn Recalculate Before Save, chọn Iterations và đặt Maximum Iteration bằng 1, Maximum change bằng 0,001(xem hình 2).

* Bước 2: trong ô B3 nhập True, trong các ô A8:A10 nhập giá trị 0 (giá trị khởi tạo ban đầu).

* Bước 3: trong ô B8 nhập công thức =(C9+2*C10)/8; trong ô B9 nhập công thức =(10-5*C8+3*C10)/7; trong ô B10 nhập công thức =(2+2*C8+C9)/2

* Bước 4: trong ô C8 nhập công thức =IF(B3=TRUE,A8,B8);trong ô C9 nhập công thức =IF(B3=TRUE,A9,B9); trong ô C10 nhập công thức =IF(B3=TRUE, A10,B10)

Ta thấy các công thức trong cột B tính theo các giá trị trong cột C, các giá trị này lại nhận kết quả tính toán từ cột B, như vậy từ công thức thứ hai trong cột B trở đi có thể sử dụng các giá trị mới tính ở các công thức trên.

* Bước 5: định dạng các ô B8:C10 là Number với ba số thập phân sau dấu phẩy

Hình 3

* Bước 6: khi ô B3 ở trạng thái True nhấn F9 để tính với giá trị khởi tạo ban đầu, sau đó thay đổi trạng thái ô B3 thành False và nhấn F9 để lặp lại quá trình tính toán với các giá trị trong cột C, tiếp tục nhấn F9 cho đến khi các giá trị hội tụ ta nhận được nghiệm của hệ ba phương trình trên trong các ô C8:C10 (xem hình 3).

Trong trường hợp quá nhiều bước lặp nghĩa là phải nhấn nhiều lần F9 (trong ví dụ trên phải lặp 10 bước) thì ta có thể tăng số bước lặp trong một lần nhấn F9 bằng cách chọn Tool s- Options và đặt Maximum Iteration lớn hơn 1.

Phương pháp nghịch đảo ma trận đơn giản nhưng chỉ phù hợp với hệ phương trình có số ẩn không quá lớn (dưới 60 ẩn) với số ẩn lớn hơn nên dùng phương pháp Gauss-Seidel. Ngoài ra còn nhiều phương pháp khác nhưng trong phạm vi bài này không đề cập đến, mong nhận được sự đóng góp ý kiến của các bạn.

vlhuong@hotmail.com

Đại Số 9 : Hệ Phương Trình , Giải Bài Toán Bằng Cách Lập Hệ Phương Trình / 2023

Trình duyệt của bạn không hỗ trợ xem video này.

Giới thiệu khóa học

LỚP ÔN LUYỆN CHUYÊN TOÁN

(Rèn chữ không quên rèn người)

THẦY NGUYỄN HUY TÀI EDU

ĐƯỢC TỔ CHỨC VỚI CHƯƠNG TRÌNH NHƯ SAU

HÃY ĐỌC ĐỂ HIỂU VỀ NGƯỜI THẦY MÀ BẠN CHUẨN BỊ HỌC NHÉ, SẼ CÓ ÍCH ĐÓ!

Tạp chí Tri ân http://trian.vn/tin-tuc/noi-chinh-3569/nguyen-huy-tai-nguoi-cong-an-nhan-dan-nguoi-thay-giao-mau-muc-959967,

HÃY ĐĂNG KÝ KẾT HỢP CÁC KÊNH CỦA THẦY ĐỂ VIỆC HỌC CỦA BẠN ĐƯỢC THUẬN LỢI HƠN VÀ ĐỪNG QUÊN CHIA SẺ, LAN TỎA TỚI CÁC BẠN CỦA BẠN ĐỂ CÙNG HỌC TẬP  NHÉ:

https://www.facebook.com/tai.tailocvuong https://www.youtube.com/channel/UCYOZKY5Ta-mv-Ao3tr2ff9A?view_as=subscriber

QUAN ĐIỂM GIÁO DỤC

1 – Giáo dục là MỤC ĐÍCH chứ không phải là PHƯƠNG TIỆN để đạt được thứ khác, MỤC ĐÍCH là để hoàn thiện NHÂN CÁCH cho người học mà NHÂN CÁCH là các tổ hợp tâm lý của người học, coi Giáo dục là một quá trình, đánh giá con người không chỉ đơn giản dựa vào kết quả học tập hay thành tích giáo dục mà là NHÂN CÁCH của con người.

2 – Luôn TÔN TRỌNG nhân cách của người học, dù mỗi người học có mục tiêu cao thấp khác nhau, nhưng chúng ta làm việc với MỤC ĐÍCH hoàn thiện NHÂN CÁCH cao cả hơn là việc chỉ đơn giản đi tìm TRI THỨC.

3 – Coi trọng sự trải nghiệm, phấn đấu, tu dưỡng, trau dồi TRI THỨC: “ Đức năng thắng số”; ý chí : “Ở đâu có ý chí ở đó có con đường”; “Thái độ hơn trình độ” ;“ Tranh thủ hơn cao thủ”…Do đó trong quá trình giáo dục, thầy luôn có những câu chuyện ĐỜI THỰC nhằm giúp người học nhận thức tốt, xác định được tư tưởng, ĐỘNG CƠ, TÂM THẾ của người học từ đó người học xác định được mục tiêu, trách nhiệm đối với việc học.

4 – MỤC ĐÍCH của việc học là để thay đổi khả năng TƯ DUY, có BẢN LĨNH TRI THỨC, TƯ DUY LINH HOẠT, tạo TƯ DUY  ĐỘT PHÁ, thay đổi thái độ theo hướng tích cực, LÀM CHỦ BẢN THÂN.

5 – Con người là tổng hòa các mối quan hệ do đó,coi dạy học là quá trình, là cơ hội Thầy – Trò học tập lẫn nhau về: Thái độ, quan điểm sống, kỹ năng sống, lối sống,… để góp phần đạt được MỤC ĐÍCH của giáo dục.

MỤC TIÊU

1 – Giúp người học đạt được MỤC TIÊU của mình, do đó trước khi học người học cần đặt cho mình một MỤC TIÊU rõ ràng, tuy rằng cao thấp khác nhau chưa quan trọng bằng việc sống, học tập phải có MỤC TIÊU, MỤC ĐÍCH.

2 – Giúp người học tiếp cận được các Modul kiến thức quan trọng ( bạn nên nhớ mỗi năm chỉ có hữu hạn một số Modul, mỗi khóa học là một Modul, mỗi Modul là một Chuyên đề). Giúp học sinh có được cái nhìn tổng quan của Nội dung, Chương trình kiến thức ở mỗi kỳ, mỗi năm học, không dàn chải. Có định hướng rõ ràng.

3 – Hình thành nên cho học sinh kỹ năng tự học, tự định hướng tư duy, giải quyết vấn đề độc lập, không quên hình thành lên kỹ năng làm việc nhóm, từ đó hình thành nên kỹ xảo làm bài, tăng tốc độ làm bài đáp ứng yêu cầu các kỳ thi.

4 – Giúp người học hình thành nên BẢN LĨNH TRI THỨC từ đó hình thành nên bản lĩnh trong cuộc sống.

PHƯƠNG PHÁP

1 – Phương pháp truyền đạt ĐẶC BIỆT, xoáy sâu vấn đề, dễ hiểu, tuân theo qui luật của nhận thức. Bài giảng được đi từ đơn giản đến phức tạp, từ trực quan sinh động đến tư duy trừu tượng, từ tư duy trừu tượng đến thực tiễn. “ Thất bại có nguyên nhân, thành công phải có phương pháp”!

2 – Thay đổi TÂM THẾ của người học là MẤU CHỐT của vấn đề, thay đổi thái độ theo hướng tích cực làm nền tảng cho sự tích cực, chủ động, từ đó xác định được ĐỘNG CƠ cho sự nghiệp học hành, tiếp cận tri thức ở mọi nơi, mọi lúc. “ Thay đổi thái độ, cuộc đời bạn sẽ thay đổi”!

3 – HỌC ĐI ĐÔI VỚI HÀNH, học Toán, Lý, Hóa gắn liền với những ứng dụng thực tiễn, không bị nhàm chán cùng với những câu chuyện đời thực đầy trải nghiệm, giúp người học có được nhãn quan thực tiễn, không xa rời thực tiễn. “ Lý thuyết chỉ là màu xám, còn cây đời mãi mãi xanh tươi”!

4 –  Coi mục đích của việc học là để thay đổi TƯ DUY và TƯ DUY LINH HOẠT không cứng nhắc, từ đó rèn luyện BẢN LĨNH TRI THỨC làm cơ sở cho TƯ DUY ĐỘT PHÁ trong thực tiễn. “ Học mà không hành được cũng chỉ như con Lừa chở đầy sách ” – HỔ GIẤY mà thôi!

NỘI DUNG

1 – Nội dung mỗi năm học (từ Lớp 6 đến Lớp 12) được biên soạn theo các Modul (Chuyên đề), mỗi Modul được biên soạn theo cấu trúc 3 phần.

2 – Mỗi Modul đều được cấu trúc theo 3 phần: Video bài giảng, Bài tập (Tự luận, Trắc nghiệm) và các Đề luyện thi.

3 – Nội dung được biên soạn phù hợp với qui luật nhận thức: Từ đơn giản đến phức tạp (Từ trực quan sinh động đến Tư duy trừu tượng, từ Tư duy trừu tượng đến thực tiễn).

4 – Luyện giải các đề thi thử vào 10, thi THPT QG

5 – CHUYÊN ĐỀ: HỆ PHƯƠNG TRÌNH VÀ GIẢI BÀI TOÁN BẰNG CÁCH LẬP HỆ PHƯƠNG TRÌNH là một chuyên đề RẤT HAY với hệ thống KIẾN THỨC, công thức, cùng với các dạng toán phong phú và đa dạng. Do đó đòi hỏi, người học phải KIÊN TRÌ, học ĐÚNG PHƯƠNG PHÁP, dành nhiều thời gian cho TỰ HỌC để cập nhật được những câu hỏi trong đề thi Tuyển sinh những năm gần đây.

VÌ KIẾN THỨC CHỈ CÓ ĐƯỢC QUA TƯ DUY CỦA CON NGƯỜI! 

 Hãy TÌM KIẾM ĐAM MÊ, THÀNH CÔNG SẼ THEO ĐUỔI BẠN!

CHÚC CÁC BẠN THÀNH CÔNG! HÃY BẬT BÀI HÁT: “ ĐƯỜNG ĐẾN NGÀY VINH QUANG” – SÁNG TÁC CỐ NHẠC SĨ TRẦN LẬP, NGHE NÀO!

SĐT: 098 666 9338 OR 08 28 28 88 66

Giải Hệ Phương Trình Bằng Phương Pháp Cộng Đại Số Và Bài Tập Vận Dụng / 2023

Giải hệ phương trình bậc nhất hai ẩn bằng phương pháp cộng đại số như thế nào? Giải hệ bằng phương pháp này có ưu điểm gì so với phương pháp thế hay không? chúng ta cùng tìm hiểu qua bài viết này.

I. Phương trình và hệ phương trình bậc nhất hai ẩn

1. Phương trình bậc nhất hai ẩn

– Phương trình bậc nhất hai ẩn: ax + by = c với a, b, c ∈ R (a2 + b2 ≠ 0)

– Tập nghiệm của phương trình bậc nhất hai ẩn: Phương trình bậc nhất hai ẩn ax + by = c luôn luôn có vô số nghiệm. Tập nghiệm của nó được biểu diễn bởi đường thẳng (d):  ax + by = c

Nếu a ≠ 0, b = 0 thì phương trình trở thành ax = c hay x = c/a và đường thẳng (d) song song hoặc trùng với trục tung

Nếu a = 0, b ≠ 0 thì phương trình trở thành by = c hay y = c/b và đường thẳng (d) song song hoặc trùng với trục hoành

2. Hệ hai phương trình bậc nhất hai ẩn

+ Hệ phương trình bậc nhất 2 ẩn: <img title="small left{egin{matrix} ax+by=c a'x + b'y=c' end{matrix}

+ Minh họa tập nghiệm của hệ hai phương trình bậc nhất hai ẩn

– Gọi (d): ax + by = c, (d’): a’x + b’y = c’, khi đó ta có:

(d)//(d’) thì hệ vô nghiệm

(d) cắt (d’) thì hệ có nghiệm duy nhất

(d) ≡ (d’) thì hệ có vô số nghiệm

+ Hệ phương trình tương đương: Hệ hai phương trình tương đương với nhau nếu chúng có cùng tập nghiệm

II. Giải hệ phương trình bậc nhất hai ẩn bằng phương pháp cộng đại số

1. Giải hệ phương trình bậc nhất 2 ẩn bằng phương pháp cộng đại số

a) Quy tắc cộng đại số

Quy tắc cộng đại số dùng để biến đổi một hệ phương trình thành hệ phương trình tương đương gồm hai bước:

+ Bước 1: Cộng hay trừ từng vế hai phương trình của hệ phương trình đã cho để được một phương trình mới.

+ Bước 2: Dùng phương trình mới ấy thay thế cho một trong hai phương trình của hệ (và giữ nguyên phương trình kia).

b) Cách giải hệ phương trình bằng phương pháp cộng đại số.

+ Bước 1: Nhân các vế của hai phương trình với số thích hợp (nếu cần) sao cho các hệ số của một ẩn nào đó trong hai phương trình của hệ bằng nhau hoặc đối nhau.

+ Bước 2: Sử dụng quy tắc cộng đại số để được hệ phương trình mới, trong đó có một phương trình mà hệ số của một trong hai ẩn bằng 0 (tức là phương trình một ẩn).

+ Bước 3: Giải phương trình một ẩn vừa thu được rồi suy ra nghiệm của hệ đã cho.

* Ví dụ: Giải các hệ PT bậc nhất 2 ẩn sau bằng PP cộng đại số:

a) <img title="small left{egin{matrix} 2x+y=3 x-y=6 end{matrix}

b) <img title="small g_white fn_cm small left{egin{matrix} 2x+3y=5 2x-y=1 end{matrix}

* Lời giải:

a) <img title="small left{egin{matrix} 2x+y=3 & (1) x-y=6 &(2) end{matrix} ight.Leftrightarrow left{egin{matrix} 3x=9 x-y=6 end{matrix}

 <img title="small Leftrightarrow left{egin{matrix} x=3 x-y=6 end{matrix} ight.Leftrightarrow left{egin{matrix} x=3 y=-3 end{matrix}

b) <img title="small left{egin{matrix} 2x+3y=5 &(1) 2x-y=1 &(2) end{matrix} ight.Leftrightarrow left{egin{matrix} 4y=4 2x-y=1 end{matrix}

 <img title="small left{egin{matrix} y=1 2x-1=1 end{matrix} ight. Leftrightarrow left{egin{matrix} y=1 x=1 end{matrix}

III. Bài tập giải hệ phương trình bậc nhất hai ẩn bằng phương pháp cộng đại số

* Bài 20 trang 19 sgk toán 9 tập 2: Giải các hệ PT sau bằng PP cộng đại số

a) <img title="small left{egin{matrix} 3x+y=3 2x-y=7 end{matrix}

c) <img title="small g_white fn_cm small left{egin{matrix} 4x+3y=6 2x+y=4 end{matrix}

e) <img title="small g_white fn_cm small left{egin{matrix} 0,3x+0,5y=3 1,5x-2y=1,5 end{matrix}

* Lời giải:

a) <img title="small g_white fn_cm small left{egin{matrix} 3x+y=3 2x-y=7 end{matrix} ight.Leftrightarrow left{egin{matrix} 5x=10 2x-y=7 end{matrix} ight.Leftrightarrow left{egin{matrix} x=2 y=-3 end{matrix}

  Lưu ý: Lấy PT(1)+PT(2)

  ⇒ Kết luận: hệ PT có nghiệm duy nhất (2;-3)

b) <img title="small g_white fn_cm small g_white fn_cm small left{egin{matrix} 2x+5y=8 2x-3y=0 end{matrix} ight.Leftrightarrow left{egin{matrix} 8y=8 2x-3y=0 end{matrix} ight.Leftrightarrow left{egin{matrix} y=1 x=frac{3}{2} end{matrix}

  Lưu ý: Lấy PT(1)-PT(2)

  ⇒ Kết luận: hệ PT có nghiệm duy nhất (2;-3)

c) <img title="small left{egin{matrix} 4x+3y=6 2x+y=4 end{matrix} ight.Leftrightarrow left{egin{matrix} 4x+3y=6 4x+2y=8 end{matrix}

 <img title="small Leftrightarrow left{egin{matrix} y=-2 2x+y=4 end{matrix} ight.Leftrightarrow left{egin{matrix} y=-2 x=3 end{matrix}

  (lấy PT(1) – PT(2))

  ⇒ Kết luận: hệ PT có nghiệm duy nhất (2;-3)

d) <img title="small left{egin{matrix} 2x+3y=-2 3x-2y=-3 end{matrix} ight.Leftrightarrow left{egin{matrix} 6x+9y=-6 6x-4y=-6 end{matrix}

  <img title="small left{egin{matrix} 13y=0 3x-2y=-3 end{matrix} ight.Leftrightarrow left{egin{matrix} y=0 x=-1 end{matrix}

  (Lấy PT(1)-PT(2))

  ⇒ Kết luận: hệ PT có nghiệm duy nhất (-1;0)

e) <img title="small left{egin{matrix} 0,3x+0,5y=3 1,5x-2y=1,5 end{matrix} ight.Leftrightarrow left{egin{matrix} 1,5x+2,5y=15 1,5x-2y=1,5 end{matrix}

  <img title="small Leftrightarrow left{egin{matrix} 4,5y=13,5 1,5x-2y=1,5 end{matrix} ight.Leftrightarrow left{egin{matrix} y=3 x=5 end{matrix}

  ⇒ Kết luận: hệ PT có nghiệm duy nhất (5;3)

Sách Giải Bài Tập Toán Lớp 9 Bài 4: Giải Hệ Phương Trình Bằng Phương Pháp Cộng Đại Số / 2023

Sách giải toán 9 Bài 4: Giải hệ phương trình bằng phương pháp cộng đại số giúp bạn giải các bài tập trong sách giáo khoa toán, học tốt toán 9 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:

Trả lời câu hỏi Toán 9 Tập 2 Bài 4 trang 17: Áp dụng quy tắc cộng đại số để biến đồi hệ (I), nhưng ở bước 1, hãy trừ từng vế hai phương trình của hệ (I) và viết ra các hệ phương trình mới thu được.

Trừ từng vế hai phương trình của hệ (I) ta được phương trình:

(2x – y) – (x + y) = 1 – 2 hay x – 2y = -1

Khi đó, ta thu được hệ phương trình mới:

Trả lời câu hỏi Toán 9 Tập 2 Bài 4 trang 17: Các hệ số của y trong hai phương trình của hệ (II) có đặc điểm gì ?

Lời giải

Hệ số của y trong hai phương trình của hệ (II) đối nhau (có tổng bằng 0)

Trả lời câu hỏi Toán 9 Tập 2 Bài 4 trang 18:

a) Nếu nhận xét về các hệ số của x trong hai phương trình của hệ (III).

b) Áp dụng quy tắc cộng đại số, hãy giải hệ (III) bằng cách trừ từng vế hai phương trình của (III).

Lời giải

a) Hệ số của x trong hai phương trình của hệ (III) giống nhau

Lấy phương trình thứ nhất trừ đi phương trình thứ hai vế với vế, ta được: 5y = 5

Do đó

Vậy hệ phương trình có nghiệm duy nhất (7/2;1)

Trả lời câu hỏi Toán 9 Tập 2 Bài 4 trang 18: Giải tiếp hệ (IV) bằng phương pháp đã nêu ở trường hợp thứ nhất.

Lấy phương trình thứ nhất trừ đi phương trình thứ hai vế với vế, ta được: -5y = 5

Do đó

Vậy hệ phương trình có nghiệm duy nhất (3; -1)

Trả lời câu hỏi Toán 9 Tập 2 Bài 4 trang 18: Nêu một cách khác để đưa hệ phương trình (IV) về trường hợp thứ nhất ?

Lời giải

Chia cả 2 vế của phương trình thứ nhất cho 3 và 2 vế của phương trình thứ hai cho 2 ta được:

Bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Bài 20 (trang 19 SGK Toán 9 tập 2): Giải các hệ phương trình sau bằng phương pháp cộng đại số:

Lời giải

(Các phần giải thích học sinh không phải trình bày).

Vậy hệ phương trình có nghiệm duy nhất (2; -3).

Vậy hệ phương trình có nghiệm duy nhất (3; -2).

(Nhân hai vế pt 1 với 2, pt 2 với 3 để hệ số của y đối nhau)

Vậy hệ phương trình có nghiệm duy nhất (-1; 0).

Vậy hệ phương trình có nghiệm duy nhất (5; 3).

Kiến thức áp dụng

Bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Bài 20 (trang 19 SGK Toán 9 tập 2): Giải các hệ phương trình sau bằng phương pháp cộng đại số:

Lời giải

(Các phần giải thích học sinh không phải trình bày).

Vậy hệ phương trình có nghiệm duy nhất (2; -3).

Vậy hệ phương trình có nghiệm duy nhất (3; -2).

(Nhân hai vế pt 1 với 2, pt 2 với 3 để hệ số của y đối nhau)

Vậy hệ phương trình có nghiệm duy nhất (-1; 0).

Vậy hệ phương trình có nghiệm duy nhất (5; 3).

Kiến thức áp dụng

Bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Bài 21 (trang 19 SGK Toán 9 tập 2): Giải các hệ phương trình sau bằng phương pháp cộng đại số:

Lời giải

(Các phần giải thích học sinh không phải trình bày).

Kiến thức áp dụng

Bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Bài 21 (trang 19 SGK Toán 9 tập 2): Giải các hệ phương trình sau bằng phương pháp cộng đại số:

Lời giải

(Các phần giải thích học sinh không phải trình bày).

Kiến thức áp dụng

Bài 4: Giải hệ phương trình bằng phương pháp cộng đại số Luyện tập (trang 19-20 sgk Toán 9 Tập 2)

Bài 22 (trang 19 SGK Toán 9 tập 2): Giải các hệ phương trình sau bằng phương pháp cộng đại số:

Lời giải

(Các phần giải thích học sinh không phải trình bày).

Phương trình 0x = 27 vô nghiệm nên hệ phương trình vô nghiệm.

Phương trình 0x = 0 nghiệm đúng với mọi x.

Kiến thức áp dụng

Bài 4: Giải hệ phương trình bằng phương pháp cộng đại số Luyện tập (trang 19-20 sgk Toán 9 Tập 2)

Bài 23 (trang 19 SGK Toán 9 tập 2): Giải hệ phương trình sau:

Kiến thức áp dụng

Bài 4: Giải hệ phương trình bằng phương pháp cộng đại số Luyện tập (trang 19-20 sgk Toán 9 Tập 2)

Bài 24 (trang 19 SGK Toán 9 tập 2): Giải các hệ phương trình sau:

Lời giải Bài toán này có hai cách giải:

Cách 1: Thu gọn từng phương trình ta sẽ thu được phương trình bậc nhất hai ẩn x và y.

Cách 2: Đặt ẩn phụ.

(Nhân hai vế pt 1 với 2; pt 2 với 3 để hệ số của y đối nhau)

Vậy hệ phương trình có nghiệm duy nhất (1; -1).

Cách 2:

a) Đặt x + y = u và x – y = v (*)

Khi đó hệ phương trình trở thành

Thay u = -7 và v = 6 vào (*) ta được hệ phương trình:

b) Đặt x – 2 = u và y + 1 = v.

Khi đó hệ phương trình trở thành :

+ u = -1 ⇒ x – 2 = -1 ⇒ x = 1.

+ v = 0 ⇒ y + 1 = 0 ⇒ y = -1.

Vậy hệ phương trình có nghiệm (1; -1).

Bài 4: Giải hệ phương trình bằng phương pháp cộng đại số Luyện tập (trang 19-20 sgk Toán 9 Tập 2)

Bài 25 (trang 19 SGK Toán 9 tập 2): Ta biết rằng: Một đa thức bằng đa thức 0 khi và chỉ khi tất cả các hệ số của nó bằng 0. Hãy tìm các giá trị của m và n để đa thức sau (với biến số x) bằng đa thức 0:

P(x) = (3m – 5n + 1)x + (4m – n -10)

Lời giải

Đa thức P(x) bằng đa thức 0

Vậy với m = 3 vào n = 2 thì đa thức P(x) bằng đa thức 0.

Kiến thức áp dụng

Bài 4: Giải hệ phương trình bằng phương pháp cộng đại số Luyện tập (trang 19-20 sgk Toán 9 Tập 2)

Bài 25 (trang 19 SGK Toán 9 tập 2): Ta biết rằng: Một đa thức bằng đa thức 0 khi và chỉ khi tất cả các hệ số của nó bằng 0. Hãy tìm các giá trị của m và n để đa thức sau (với biến số x) bằng đa thức 0:

P(x) = (3m – 5n + 1)x + (4m – n -10)

Lời giải

Đa thức P(x) bằng đa thức 0

Vậy với m = 3 vào n = 2 thì đa thức P(x) bằng đa thức 0.

Kiến thức áp dụng

Bài 4: Giải hệ phương trình bằng phương pháp cộng đại số Luyện tập (trang 19-20 sgk Toán 9 Tập 2)

Bài 26 (trang 19 SGK Toán 9 tập 2): Xác định a và b để đồ thị của hàm số y = ax + b đi qua hai điểm A và B trong mỗi trường hợp sau:

a) A(2; -2) và B(-1; 3) ; b) A(-4; -2) và B(2; 1)

c) A(3; -1) và B(-3; 2) ; d) A(√3; 2) và B(0; 2)

Lời giải

a) Đồ thị hàm số y = ax + b đi qua A(2; -2) ⇔ 2.a + b = -2 (1)

Đồ thị hàm số y = ax + b đi qua B(-1 ; 3) ⇔ a.(-1) + b = 3 (2)

Từ (1) và (2) ta có hệ phương trình :

b) Đồ thị hàm số y = ax + b đi qua A(-4; -2) ⇔ a.(-4) + b = -2

Đồ thị hàm số y = ax + b đi qua B(2 ; 1) ⇔ a.2 + b = 1

Ta có hệ phương trình :

c) Đồ thị hàm số y = ax + b đi qua A(3 ; -1) ⇔ a.3 + b = -1

Đồ thị hàm số y = ax + b đi qua B(-3 ; 2) ⇔ a.(-3) + b = 2.

Ta có hệ phương trình :

d) Đồ thị hàm số y = ax + b đi qua A(√3 ; 2) ⇔ a.√3 + b = 2 (*)

Đồ thị hàm số y = ax + b đi qua B(0; 2) ⇔ a.0 + b = 2 ⇔ b = 2.

Thay b = 2 vào (*) ta được a.√3 + 2 = 2 ⇔ a.√3 = 0 ⇔ a = 0.

Vậy a = 0 và b = 2.

Kiến thức áp dụng

Bài 4: Giải hệ phương trình bằng phương pháp cộng đại số Luyện tập (trang 19-20 sgk Toán 9 Tập 2)

Bài 27 (trang 20 SGK Toán 9 tập 2): Bằng cách đặt ẩn phụ (theo hướng dẫn), đưa các hệ phương trình sau về dạng hệ hai phương trình bậc nhất hai ẩn rồi giải:

Kiến thức áp dụng

Bạn đang đọc nội dung bài viết Giải Hệ Phương Trình Đại Số Tuyến Tính Bằng Excel / 2023 trên website Techcombanktower.com. Hy vọng một phần nào đó những thông tin mà chúng tôi đã cung cấp là rất hữu ích với bạn. Nếu nội dung bài viết hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!