Đề Xuất 4/2023 # Đồ Thị Hàm Số Chứa Giá Trị Tuyệt Đối # Top 11 Like | Techcombanktower.com

Đề Xuất 4/2023 # Đồ Thị Hàm Số Chứa Giá Trị Tuyệt Đối # Top 11 Like

Cập nhật nội dung chi tiết về Đồ Thị Hàm Số Chứa Giá Trị Tuyệt Đối mới nhất trên website Techcombanktower.com. Hy vọng thông tin trong bài viết sẽ đáp ứng được nhu cầu ngoài mong đợi của bạn, chúng tôi sẽ làm việc thường xuyên để cập nhật nội dung mới nhằm giúp bạn nhận được thông tin nhanh chóng và chính xác nhất.

Published on

1. ĐỒ THỊ HÀM SỐ CHỨA GIÁ TRỊ TUYỆT ĐỐI Dạng 1. Đồ Thị Hàm A. Kiến thức . Đề bài : Cho hàm số y=f(x) có đồ thị (C) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1) Ta có Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : – Giữ nguyên phần đồ thị của (C) nằm trên trục hoành ( do (1) ) – Lấy đối xứng qua trục hoành phần đồ thị (C) nằm dưới trục hoành (do (2)Câu 1. Cho hàm số (C)1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1) Ta có Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : – Giữ nguyên phần đồ thị của (C) nằm trên trục hoành ( do (1) ) – Lấy đối xứng qua trục hoành phần đồ thị (C) nằm dưới trục hoành (do (2))Câu 2. Cho hàm số (C)

2. 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1) Ta có Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : – Giữ nguyên phần đồ thị của (C) nằm trên trục hoành ( do (1) ) – Lấy đối xứng qua trục hoành phần đồ thị (C) nằm dưới trục hoành (do (2))Câu 3. Cho hàm số (C)1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1) Ta có Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : – Giữ nguyên phần đồ thị của (C) nằm trên trục hoành ( do (1) ) – Lấy đối xứng qua trục hoành phần đồ thị (C) nằm dưới trục hoành (do (2))

3. Dạng 2. Đồ Thị Hàm A. Kiến thức . Đề bài : Cho hàm số y=f(x) có đồ thị (C) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1) Ta có Ta lại có hàm số là hàm chẵn nên (C1) đối xứng qua trục tung (3) Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : – Giữ nguyên phần đồ thị của (C) nằm bên phải trục tung ( do (1) ) – Lấy đối xứng qua trục tung phần đồ thị (C) nằm bên phải trục tung (do (3))Câu 4. Cho hàm số (C)1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1) Ta có Ta lại có hàm số là hàm chẵn nên (C1) đối xứng qua trục tung (3) Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : – Giữ nguyên phần đồ thị của (C) nằm bên phải trục tung ( do (1) ) – Lấy đối xứng qua trục tung phần đồ thị (C) nằm bên phải trục tung (do (3))

4. Câu 5. Cho hàm số (C)1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1) Ta có Ta lại có hàm số là hàm chẵn nên (C1) đối xứng qua trục tung (3) Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : – Giữ nguyên phần đồ thị của (C) nằm bên phải trục tung ( do (1) ) – Lấy đối xứng qua trục tung phần đồ thị (C) nằm bên phải trục tung (do (3))

5. Dạng 3. Đồ Thị Hàm A. Kiến thức . Đề bài : Cho hàm số y=f(x) có đồ thị (C) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C2) Ta vẽ từ trong ra ngoài  Vẽ đồ thị hàm có đồ thị (C1) Ta có Ta lại có hàm số là hàm chẵn nên (C1) đối xứng qua trục tung (3) Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : – Giữ nguyên phần đồ thị của (C) nằm bên phải trục tung ( do (1) ) – Lấy đối xứng qua trục tung phần đồ thị (C) nằm bên phải trục tung (do (3))  Vẽ đồ thị hàm có đồ thị (C2) Ta có Do đó đồ thị hàm số (C2) được suy từ đồ thị hàm số (C1) như sau : – Giữ nguyên phần đồ thị của (C1) nằm trên trục hoành ( do (4) ) – Lấy đối xứng qua trục hoành phần đồ thị (C1) nằm dưới trục hoành (do (5))Câu 6. Cho hàm số (C)1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1) Ta vẽ từ trong ra ngoài  Vẽ đồ thị hàm có đồ thị (C1) Ta có Ta lại có hàm số là hàm chẵn nên (C1) đối xứng qua trục tung (3) Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : – Giữ nguyên phần đồ thị của (C) nằm bên phải trục tung ( do (1) ) – Lấy đối xứng qua trục tung phần đồ thị (C) nằm bên phải trục tung (do (3))

6.  Vẽ đồ thị hàm có đồ thị (C2) Ta có Do đó đồ thị hàm số (C2) được suy từ đồ thị hàm số (C1) như sau : – Giữ nguyên phần đồ thị của (C1) nằm trên trục hoành ( do (4) ) – Lấy đối xứng qua trục hoành phần đồ thị (C1) nằm dưới trục hoành (do (5))Câu 7. Cho hàm số (C)1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C2) Ta vẽ từ trong ra ngoài

7.  Vẽ đồ thị hàm có đồ thị (C1)Ta cóTa lại có hàm số là hàm chẵn nên (C1) đối xứng qua trục tung (3)Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : – Giữ nguyên phần đồ thị của (C) nằm bên phải trục tung ( do (1) )- Lấy đối xứng qua trục tung phần đồ thị (C) nằm bên phải trục tung (do (3))  Vẽ đồ thị hàm có đồ thị (C2)Ta cóDo đó đồ thị hàm số (C2) được suy từ đồ thị hàm số (C1) như sau :- Giữ nguyên phần đồ thị của (C1) nằm trên trục hoành ( do (4) )- Lấy đối xứng qua trục hoành phần đồ thị (C1) nằm dưới trục hoành (do (5))

8. Dạng 4. Đồ Thị Hàm A. Kiến thức . Đề bài : Cho hàm số y=u(x).v(x) có đồ thị (C) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1) Ta có Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : – Giữ nguyên phần đồ thị của (C) nằm trên miền ( do (1) ) – Lấy đối xứng qua trục hoành phần đồ thị (C) nằm trên miền (do (2))Câu 8. Cho hàm số (C)1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1) Tacó Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : – Giữ nguyên phần đồ thị của (C) nằm trên miền ( do (1) ) – Lấy đối xứng qua trục hoành phần đồ thị (C) nằm trên miền (do (2))Câu 9. Cho hàm số (C)1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1) Tacó Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau :

9. – Giữ nguyên phần đồ thị của (C) nằm trên miền ( do (1) ) – Lấy đối xứng qua trục hoành phần đồ thị (C) nằm trên miền( (do (2))Câu 10. Cho hàm số (C) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1) Ta có Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : – Giữ nguyên phần đồ thị của (C) nằm trên miền ( do (1) ) – Lấy đối xứng qua trục hoành phần đồ thị (C) nằm trên miền (do (2))Câu 11. Cho hàm số (C)1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1)

10. Ta có Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : – Giữ nguyên phần đồ thị của (C) nằm trên miền ( do (1) ) – Lấy đối xứng qua trục hoành phần đồ thị (C) nằm trên miền (do (2))Câu 12. Cho hàm số (C)1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1) Ta có Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : – Giữ nguyên phần đồ thị của (C) nằm trên miền ( do (1) ) – Lấy đối xứng qua trục hoành phần đồ thị (C) nằm trên miền (do (2))

11. Câu 13. Cho hàm số (C)1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1) Ta có Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : – Giữ nguyên phần đồ thị của (C) nằm trên miền ( do (1) ) – Lấy đối xứng qua trục hoành phần đồ thị (C) nằm trên miền (do (2)) Dạng 5. Đồ Thị Hàm

12. A. Kiến thức . Đề bài : Cho hàm số y=f(x) có đồ thị (C) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1) Ta có nhận trục hoành làm trục đối xứng (2) Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : – Giữ nguyên phần đồ thị của (C) nằm trên trục hoành ( do (1) ) – Lấy đối xứng qua trục hoành phần đồ thị (C) nằm trên trục hoành (do (2))Câu 14. Cho hàm số (C)1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1) Ta có nhận trục hoành làm trục đối xứng (2) Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : – Giữ nguyên phần đồ thị của (C) nằm trên trục hoành ( do (1) ) – Lấy đối xứng qua trục hoành phần đồ thị (C) nằm trên trục hoành (do (2))Câu 15. Cho hàm số (C)1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1) Ta có nhận trục hoành làm trục đối xứng (2) Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : – Giữ nguyên phần đồ thị của (C) nằm trên trục hoành ( do (1) ) – Lấy đối xứng qua trục hoành phần đồ thị (C) nằm trên trục hoành (do (2))

13. Câu 16. Cho hàm số (C)1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1) Ta có nhận trục hoành làm trục đối xứng (2) Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : – Giữ nguyên phần đồ thị của (C) nằm trên trục hoành ( do (1) ) – Lấy đối xứng qua trục hoành phần đồ thị (C) nằm trên trục hoành (do (2))

14. x 1Câu 17. Cho hàm số : y (1) x 1 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) 2.Từ đồ thị hàm số (1) suy ra đồ thị hàm số (C1) Ta vẽ từ trong ra ngoài và từ phải qua trái: x 1 y x 1

Recommended

Vẽ Đồ Thị Hàm Số Chứa Trị Tuyệt Đối

No Text Content!

GIẢI TÍCH 12NC Thầy: Lê Văn Ánhhttp://www.anhlevan.tk Page 1

GIẢI TÍCH 12NC Thầy: Lê Văn ÁnhII. Bài tập minh họa:  x3 − 3×2 (x ≥ 1) 2 x (x < 1)Bài 1: Vẽ đồ thị hàm số: y =  x −1* Đồ thị hàm số gồm 2 phần:)Phaàn 1 : Phaàn cuûa ñoà thò haøm soá f(x) = x3 − 3×2 treân 1; +∞: haøm 2x( )Phaàn 2 x−1 Phaàn cuûa ñoà thò soá g(x) = treân −∞;1http://www.anhlevan.tk Page 3

GIẢI TÍCH 12NC Thầy: Lê Văn ÁnhBài 2: Cho hàm số : y = x3 − 3x + 2 (1) d) y = x + 2 (x −1)21. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1)2. Từ đồ thị (C) đã vẽ, hãy suy ra các đường sau : a) y = x 3 − 3 x + 2 b) y = x3 − 3x + 2 c) y = x3 − 3x + 2Giải:1.2.a) y = g(x) = x 3 − 3 x + 2 là hàm số chẵn trên TXĐ D = R . Vì ∀x ∈ D ⇒ −g(x−∈x)D= g(x) Nên đồ thị hàm số này đối xứng nhau qua Oy. Mặt khác: Với x ≥ 0 ⇒ x = x ⇒ y = x3 − 3x + 2 . Suy ra: Đồ thị hàm số này gồm 2 phần: )Phaàn1: Phaàn cuûa ñoà thò (C) treân 0;+∞ ( Xem Hình 1) Phaàn2 : Ñoái xöùng qua Oy cuûa ñoà thò Phaàn 1b) y= x3 − 3x +2 = −x3(x−3 3x + 2 2) neáu x3 − 3x + 2 ≥ 0 − 3x + neáu x3 − 3x + 2 ≤ 0 Suy ra: Đồ thị hàm số này gồm 2 phần: PPhhaaàànn 1 : Phaàn cuûa ñoà thò (C) naèm phía treân Ox (Keå caû ñieåm treân Ox) ( Xem Hình 2) 2 : Ñoái xöùng qua Ox cuûa phaàn ñoà thò (C) naèm phía döôùi Ox x3 − 3x + 2 ≥ 0c) y = x3 − 3x + 2 ⇔  y = x3 − 3x + 2   Suy ra: Đường này gồm 2 phần:   y = −( x 3 − 3 x + 2) PPhhaaàànn 1 : Phaàn cuûa ñoà thò (C) naèm phía treân Ox (Keå caû ñieåm treân Ox) ( Xem Hình 3) 2 : Ñoái xöùng qua Ox cuûa ñoà thò Phaàn 1d) y= x + 2 (x − 1)2 = −x3(x−3 3x + 2 2) neáu x≥ −2 − 3x + neáu x≤ −2 Suy ra: Đồ thị hàm số này gồm 2 phần: Phaàn1: Phaàn cuûa ñoà thò (C) treân [−2; +∞) ( Xem Hình 2) Phaàn2 : Ñoái xöùng qua Ox phaàn cuûa ñoà thò (C) treân (−∞; −2]http://www.anhlevan.tk Page 4

GIẢI TÍCH 12NC Thầy: Lê Văn Ánh Hình 1 Hình 2 Hình 3Bài 3: Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số : y= 2x −1 (1) x −1 Từ đồ thị (C) đã vẽ, hãy suy ra các đường sau : a) y= 2 x −1 b) y = 2x −1 c) y = 2x −1 d) y = 2x −1 x −1 x −1 x −1 x −12)a) y = g(x) = 2 x −1 là hàm số chẵn trên TXĐ D = ” {±1}. Vì ∀x ∈ D ⇒ −x ∈ D g(x) x −1 g(−x) = Nên đồ thị hàm số này đối xứng nhau qua Oy. Mặt khác: Với x≥0⇒ x = x⇒ y = 2x −1 . Suy ra: Đồ thị hàm số này gồm 2 phần: x −1 )Phaàn1: Phaàn cuûa ñoà thò (C) treân 0;+∞ ( Xem Hình a) Phaàn2 : Ñoái xöùng qua Oy cuûa ñoà thò Phaàn 1 2x − 1 neáu 2x − 1 ≥ 0 −x2−xx−1−11 x−1b) y= 2x − 1 = Suy ra: Đồ thị hàm số này gồm 2 phần: x−1 2x − 1 neáu x−1 ≤ 0 Phaàn1: Phaàn cuûa ñoà thò (C) naèm phía treân Ox (Keå caû ñieåm treân Ox) Phaàn2 : Ñoái xöùng qua Ox cuûa phaàn ñoà thò (C) naèm phía döôùi Ox ( Xem Hình b)http://www.anhlevan.tk Page 5

GIẢI TÍCH 12NC Thầy: Lê Văn ÁnhBài 4 (tham khảo): Cho hàm số : y= x2 (1) x −11. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1)2. Từ đồ thị (C) đã vẽ, hãy suy ra các đường sau : a/ y= x2 b/ y= x2 c) y = x2 d) y= x2 x −1 x −1 x −1 x −1Giải:1. y 6 5 4 y=x+1 3 2 1 -4 -3 -2 -1 12 34 x -1 -2 x=1 5 -32. b/ a/ y y 6 6 5 y=-x+1 4 y=x+1 4 y=x+1 2 3 x 2 x y=-x-1 1 12 34 345 -4 -3 -2 -1 -4 -3 -2 x=1 x=-1 d/ -1 12 -1 -2 -2 x=1 -3 c/ y y -8 8 6 6 y=x+1 4 y=-x-1 2 x4 y=x+1 -6 -4 -2 2 46 8 y=-x+1 -2 x=1 2 -4 -6 -8 -4 -3 -2 -1 1 23 4 -10 x=-1 -2 x=1http://www.anhlevan.tk Page 7

GIẢI TÍCH 12NC Thầy: Lê Văn Ánh BÀI TẬP LUYỆN TẬPBài 1: Cho hàm số : y = −x3 + 3x (1) 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) 2. Từ đồ thị (C) đã vẽ, hãy suy ra đồ thị các hàm số sau: a/ y = − x 3 + 3 x b/ y = −x3 + 3x c) y = −x3 + 3xBài 2: Cho hàm số : y = x3 − 3×2 (1) 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) 2. Từ đồ thị (C) đã vẽ, hãy suy ra đồ thị các hàm số sau: ( )b/ y = x x2 − 3 x a/ y = x 3 − 3×2 c) y = x2 x − 3Bài 3: Cho hàm số: y = x4 − 4×2 + 2 (1) 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) 2. Từ đồ thị (C) đã vẽ, hãy suy ra đồ thị các hàm số sau: a/ y = −x4 + 4×2 − 2 b/ y = x4 − 4×2 + 2 c) y = x4 − 4×2 + 2Bài 4: Cho hàm số : y = 6×2 − x4 (1) 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) 2. Từ đồ thị (C) đã vẽ, hãy suy ra đồ thị các hàm số sau y = x2 x2 − 6Bài 5: Cho hàm số : y = 2x + 3 (1) x −1 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số (1) 2. Từ đồ thị (C) đã vẽ, hãy suy ra đồ thị các hàm số sau: a) y= 2x +3 b) y= 2 x +3 c) y = 2x +3 x −1 x −1 x −1 d) y = 2x +3 e) y= 2x + 3 x −1 x −1Bài 6: Khảo sát sự biến thiên và vẽ đồ thị (C): y = x − 2 . x + 2 Từ đồ thị (C) đã vẽ, hãy suy ra đồ thị của các hàm số: a) (C1): y= f1(x) = x−2 b) (C2): y= f2(x) = x−2 x+2 x+2 c) (C3): y= f3(x) = x −2 d) (C4): y = f4(x) = x−2 x +2 x+2 e) (C5): y= f5(x) = x−2 f) (C6): y = f6(x) = x−2 x+2 x+2 Daøy coâng môùi thaønh ñaït ¡!http://www.anhlevan.tk Page 8

GIẢI TÍCH 12NC Thầy: Lê Văn ÁnhHình ảnh miền nghiệm ( đủ các màu ) của đề thi dự bị THPTQG 2015:→ Có ngay miền nghiệm là tam giác ABC→ Và toạ độ nguyên của các đỉnh của miền nghiệm là A(4;5) , B(6;3) AC BCÁC HÀM VẼ HÌNH: 1) r<sin left(12theta right)http://www.anhlevan.tk Page 10

Giải Phương Trình Chứa Dấu Giá Trị Tuyệt Đối

Tờn : Trương Quang An Giỏo viờn Trường THCS Nghĩa Thắng Địa chỉ : Xó Nghĩa Thắng ,Huyện Tư Nghĩa ,Tỉnh Quảng Ngói Điện thoại : 01208127776 giảI phương trình chứa dấu giá trị tuyệt đối các kiến thức cơ bản về GIá TRị TUYệT Đối Trước khi đưa ra các dạng toán về giá trị tuyệt đối cùng với phương pháp giải thì giáo viên phải cho học sinh hiểu sâu sắc và nhớ được định nghĩa về giá trị tuyệt đối, từ định nghĩa suy ra một số tính chất để vận dụng vào làm bài tập. Định nghĩa a, Định nghĩa 1( lớp 6) : Giá trị tuyệt đối của số nguyên a, kí hiệu là , là khoảng cách từ điểm a đến điểm gốc 0 trên trục số ( hình 1). -a 0 a -a a Hình 1 Ví dụ 1: = 3 Do đó đẳng thức đã cho được nghiệm đúng bởi hai số tương ứng với hai điểm trên trục số ( hình 2) -3 0 3 Hình 2 Tổng quát:; Ví dụ 2: a 3 nếu a 0 0 a 3 3 -3 a 3 -a 3 nếu a < 0 -3 a < 0 Do bất đẳng thức đã được nghiệm đúng bởi tập hợp các số của đoạn và trên trục số thì được nghiệm đúng bởi tập hợp các điểm của đoạn ( hình 3) -3 0 3 Hình 3 Ví dụ 3: a 3 nếu a 0 a 3 nếu a 0 3 3 a hoặc a 3 -a 3 nếu a < 0 a -3 v nếu a < 0 Do bất đẳng thức đã được nghiệm đúng bởi tập hợp các số của hai nửa đoạn (-; 3] và [3; + ) và trên trục số thì đợc nghiệm đúng bởi hai nửa đoạn tương ứng với các khoảng số đó. (hình 4) -3 0 3 Hình 4 Tổng quát: b, Định nghĩa 2 ( lớp 7-9): Giá trị tuyệt đối của một số thực a, ký hiệu là: a nếu a 0 = -a nếu a < 0 Ví dụ1: *Mở rộng khái niệm này thành giá trị tuyệt đối của một biểu thức A(x), kí hiệu là: A(x) nếu A(x) 0 = -A(x) nếu A(x) < 0 Ví dụ 2: 2x - 1 nếu 2x- 1 0 2x - 1 nếu = = -(2x - 1) nếu 2x - 1 < 0 1 - 2x nếu x < Các tính chất 2.1. Tính chất 1: 0 a 2.2. Tính chất 2: = 0 a = 0 2.3. Tính chất 3: - a 2.4 Tính chất 4: = Dựa trên định nghĩa giá trị tuyệt đối người ta rễ thấy được các tính chất trên 2.5. Tính chất 5: Thật vậy: - a ; - a -( +) a + b + 2.6. Tính chất 6: - Thật vậy: = (1) (2) Từ (1) và (2) đpcm. 2.7. Tính chất 7: Thật vậy: (1) (2) (3) Từ (1), (2) và (3) (4) (5) Từ (4) và (5) đpcm. 2.8. Tính chất 8: Thật vậy: a = 0, b = 0 hoặc a = 0, b 0 hay a 0, b= 0 (1) (2) a 0 (3) (4) Từ (1), (2), (3) và (4) đpcm. 2.9. Tính chất 9: Thật vậy: a = 0 (1) a < 0 và b < 0 = -a, = -b và (3) Từ (1), (2), (3) và (4) đpcm. II. Các dạng cơ bản và phương pháp giảI phương trình chứa dấu giá trị tuyệt đối Trước tiên học sinh cần nắm chắc được các tính chất của giá trị tuyệt đối. Làm các bài tập đơn giản với sự hướng dẫn của giáo viên. Sau đó làm các bài tập nâng cao và bài tập đòi hỏi sự tư duy của học sinh. Cần cho học sinh vận dụng các kiến thức về giá trị tuyệt đối (chủ yếu là định nghĩa về giá trị tuyệt đối của 1 số, 1 biểu thức) để đưa bài toán trên về bài toán trong đó không còn chứa dấu giá trị tuyệt đối để có thể tiến hành các phép tính đại số quen thuộc. Xuất phát từ kiến thức trên người ta phát triển thành yêu cầu giải phương trình chứa dấu giá trị tuyệt đối.Trong phạm vi kiến thức lớp 8 chúng ta cần hướng dẫn cho học sinh quan tâm tới 3 dạng phương trình chứa dấu giá trị tuyệt đối, bao gồm: Dạng 1: Phương trình: , với k là hằng số không âm. Dạng 2: Phương trình: Dạng 3: Phương trình: . Để học sinh tiếp cận và nắm vững các phương pháp giải ta cần hướng dẫn học sinh theo thứ tự cụ thể như sau: Bài toán 1: Giải phương trình: , với k là hằng số không âm. Phương pháp giải: Bước 1: Đặt điều kiện để f(x) xác định (nếu cần). Bước 2: Khi đó nghiệm x. Bước 3: Kiểm tra điều kiện, từ đó đưa ra kết luận nghiệm cho phương trình. Ví dụ1: Giải các phương trình sau: a, b, - 2 = 0 a, ta có Vậy phương trình có hai nghiệm x = 1 và x = 2. b, Điều kiện xác định của phương trình là x 0. Vậy phương trình có hai nghiệm x = và x = 1. Bài tập : Giải các phương trình sau: a, b, c, d, Bài toán 2: Giải phương trình: Phương pháp giải: Bước 1: Đặt điều kiện để f(x) và g(x) xác định (nếu cần). Bước 2: Khi đó nghiệm x. Bước 3: Kiểm tra điều kiện, từ đó đưa ra kết luận nghiệm cho phương trình. Ví dụ 2: Giải các phương trình sau: a, b, . c, Giải: a, Biến đổi tương đương phương trình: Vậy phương trình có hai nghiệm x = -6 và x = 0. b, Điều kiện xác định của phương trình là x 0. Biến đổi tương đương phương trình: Vậy phương trình có nghiệm x = 1 Ví dụ 3: Giải phương trình: = , với m là tham số. Giải : Biến đổi tương đương phương trình: Vậy phương trình có hai nghiệm x = 3m + 6 và x = m - 2 Bài tập củng cố: Giải các phương trình sau: a, c, d, Bài toán 3: Giải phương trình: Phương pháp giải: Ta có thể lựa chọn một trong hai cách giải sau: Cách 1: (Phá dấu giá trị tuyệt đối) Thực hiện các bước: Bước 1: Đặt điều kiện để f(x) và g(x) xác định (nếu cần). Bước 2: Xét hai trường hợp: -Trường hợp 1: Nếu f(x) 0 (1) -Trường hợp 2: Nếu f(x) < 0 (2) Bước 3: Kiểm tra điều kiện, từ đó đưa ra kết luận nghiệm cho phương trình. Cách 2: Thực hiện các bước: Bước 1: Đặt điều kiện để f(x) và g(x) xác định (nếu cần) và g(x) 0. Bước 2: Khi đó: Nghiệm x Bước 3: Kiểm tra điều kiện, từ đó đưa ra kết luận nghiệm cho phương trình. Ví dụ 4: Giải phương trình: . Cách 1: Xét hai trường hợp: -Trường hợp 1: Nếu x + 4 0 x -4 (1) Phương trình có dạng: x + 4 + 3x = 5 4x = 1 x = thoả mãn điều kiện (1) -Trường hợp 2: Nếu x + 4 < 0 x < - 4 (2) Phương trình có dạng: -x - 4 + 3x = 5 2x = 9 x = không thoả mãn tra điều kiện (2). Vậy phương trình có nghiệm x = . Cách 2: Viết lại phương trình dưới dạng Với điều kiện - 3x + 5 0 - 3x - 5 x Khi đó phương trình được biến đổi: Vậy phương trình có nghiệm x = . Lưu ý1: Qua ví dụ trên các em học sinh sẽ thấy rằng cả hai cách giải đều có độ phức tạp như nhau. Vậy trong trường hợp nào cách 1 sẽ hiệu quả hơn cách 2 và ngược lại? Khi vế phải là một biểu thức không là đa thức có bâc 1 ta nên sử dụng cách 1 vì khi sử dụng cách 2 thì việc tìm x thoả mãn điều kiện g(x) không âm phức tạp hơn. Khi biểu thức trong trị tuyệt đối ở dạng phức tạp thì không nên sử dung cách 1 vì sẽ gặp khó khăn trong việc đi giải bất phương trình f(x) 0 và f(x) < 0. Tuy nhiên học sinh có thể khắc phục bằng cách không di giải điều kiện mà cứ thực hiện các bước biến đổi phươnmg trình sau đó thử lại điều kiện mà không đối chiếu. Ví dụ 5: Giải các bất phương trình: a, b, Giải: a, Xét hai trường hợp. -Trường hợp 1: Nếu x + 1 0 x -1 (1) Khi đó phương trình có dạng: x + 1 = x2 + x x2 = 1 x = 1 (thoả mãn đk 1) -Trường hợp 2: Nếu x + 1 < 0 x < -1 (2) Khi đó phương trình có dạng: - x - 1 = x2 + x x2 + 2x + 1 = 0 (x+1)2 = 0 x = -1 ( không thoả mãn đk 2). Vậy phương trình cób hai nghiệm x = 1 b, Viết lại phương trình dưới dạng: với điều kiện 2x - 4 0 2x 4 x 2 (*) Ta có: Vậy phương trình có nghiệm x = 2. Lưu ý 2: - Đối với một số dạng phương trình đặc biệt khác ta cũng sẽ có những cách giải khác phù hợp chẳng hạn như phương pháp đặt ẩn phụ, sử dụng bất đẳng thức Côsi. Ví dụ 6: Giải phương trình Viết lại phương trình dưới dạng (1) Đặt = t ( t 0) Khi đó từ (1) ta có phương trình t2 - 2t - 3 = 0 t2 + t - 3t - 3 = 0 t(t + 1) - 3(t + 1) = 0 (t + 1)(t - 3) = 0 t = - 1 (loại) và t = 3 (t/m) Với t = 3 ta được = 3 Vậy phương trình có hai nghiệm x = -2 và x = 4. Bài tập củng cố: Bài 1: Giải các phương trình: a, b, c, d, e, Bài 2: Giải và biện luận phương trình sau Bài 3: Tìm m để phương trình sau có nghiệm Phương pháp giải: Bỏ dấu giá trị tuyệt đối ở dạng này phải lập bảng xét dấu để xét hết các trường hợp xảy ra (lưu ý học sinh số trường hợp xảy ra bằng số biểu thức chứa đấu giá trị tuyệt đối cộng thêm 1). Ví dụ 7: Giải phương trình (1) Điều kiện xác định của phương trình là x -1 Ta có thể lựa chọn một trong hai cách sau: Khi đó (1) Vậy phương trình có hai nghiệm x = -4 và x = 2 Cách 2: áp dụng bất đẳng thức Côsi ta có: VT = =2 Ta thấy dấu bằng xảy ra (Tức là ) khi Vậy phương trình có hai nghiệm x = -4 và x = 2 Đối với những phương trình có từ giá trị tuyệt đối trở lên ta nên giải theo cách đặt điều kiện để phá dấu giá trị tuyệt đối. Mỗi trị tuyệt đối sẽ có một giá trị x làm mốc để xác định biểu thức trong trị tuyệt đối âm hay không âm. Những giá trị x này sẽ chia trục số thành các khoảng có số khoảng lớn hơn số các trị tuyệt đối là 1. Khi đó ta xét giá trị x trong từng khoảng để bỏ dấu giá trị tuyệt đối và giải phương trình tìm được. Ví dụ 8: Giải phương trình + = 2 Ta thấy x - 1 0 x 1 x - 3 0 x 3 Khi đó để thực hiện việc bỏ dấu giá trị tuyệt đối ta cần phải xét ba trường hợp. +Trường hợp 1: Nếu x < 1 Khi đó phương trình có dạng: - x + 1 - x + 3 = 2 -2x = - 2 x = 1 (không t/m đk) +Trường hợp 2: Nếu 1 x < 3. Khi đó ta có phương trình: +Trường hợp 3: Nếu x 3 Khi đó phương trình có dạng: x - 1 + x - 3 = 2 2x = 6 x = 3 (t/m đk) Vậy nghiệm của phương trình là 1 x 3 Bài tập củng cố: Giải các phương trình sau: 4). 5). 6).

Tiết 64 Bài 5: Phương Trình Có Chứa Dấu Giá Trị Tuyệt Đối

Kiến Thức : Hs nắm được định nghĩa GTTĐ , từ đó biết cách mở dấu GTTĐ của một biểu thức có chứa dấu GTTĐ

Kỷ năng : Biết giải BPT bậc nhất 1 ẩn với điều kiện xác định của bài toán

Tiếp tục rèn luyện kỹ năng trình bày bài giải , tính cẩn thận tính chính xác

Giải thạo phương trình chứa dấu giá trị tuyệt đối.

Thái độ : Biết cách bỏ giá trị tuyệt đối.

B. DỤNG CỤ DẠY HỌC

GV : SGK , Bảng phụ, phấn màu ,phiếu học tập ,máy tính bỏ túi , thứơc thẳng

HS : SGK , bảng nhóm , máy tính bỏ túi , thứơc thẳng ,

C. CÁC HOẠT ĐỘNG TRÊN LỚP

I. ỔN ĐỊNH LỚP (1ph)

II. KIỂM TRA ( ph)

III. DẠY BÀI MỚI

Ngày soạn : Ngày dạy : Tuần : 30 Tiết 64 : BÀI 5: PHƯƠNG TRÌNH CÓ CHỨA DẤU GIÁ TRỊ TUYỆT ĐỐI A.YÊU CẦU TRỌNG TÂM Kiến Thức : Hs nắm được định nghĩa GTTĐ , từ đó biết cách mở dấu GTTĐ của một biểu thức có chứa dấu GTTĐ Kỷ năng : Biết giải BPT bậc nhất 1 ẩn với điều kiện xác định của bài toán Tiếp tục rèn luyện kỹ năng trình bày bài giải , tính cẩn thận tính chính xác Giải thạo phương trình chứa dấu giá trị tuyệt đối. Thái độ : Biết cách bỏ giá trị tuyệt đối. B. DỤNG CỤ DẠY HỌC GV : SGK , Bảng phụ, phấn màu ,phiếu học tập ,máy tính bỏ túi , thứơc thẳng HS : SGK , bảng nhóm , máy tính bỏ túi , thứơc thẳng , CÁC HOẠT ĐỘNG TRÊN LỚP I. ỔN ĐỊNH LỚP (1ph) II. KIỂM TRA ( ph) III. DẠY BÀI MỚI TG NỘI DUNG HOẠT ĐỘNG GV HOẠT ĐỘNG HS 1. Nhắc lại về giá trị tuyệt đối: = a khi a0 =-a khi a<0 Vd1 : Rút gọn biểu thức : A=+x-2 khi x3 Khi x3 thì x-30 nên =x-3. Vậy A=x-3+x-2= 2x-5 2. Giải một số phương trình chứa dấu giá trị tuyệt đối : Vd2:Giảiphươngtrình:=x+4 Khi 3x0 hay x0 : 3x=x+42x=4x=2 Khi 3x<0 hay x<0 : -3x=x+4-4x=4x=-1 Vậy S= Vd3 : Giải phương trình : =9-2x Khi x-30 hay x3 : x-3= 9-2x3x=12x=4 Khi x-3<0 hay x<3 : 3-x= 9-2xx=6 (loại) Vậy S= Có những dạng phương trình ta thấy chứa dấu giá trị tuyệt đối. Để giải nó ta phải đưa về phương trình không chứa dấu giá trị tuyệt đối, ta phải đưa bằng cách nào Trước hết là nhắc lại về giá trị tuyệt đối Giá trị tuyệt đối của số a, kí hiệu là Nếu a0 thì ntn ? Nếu a<0 thì ntn ? Tính , , ? Khi x3 thì x-3 ntn ? Khi đó bằng gì ? Hãy làm bài ?1 (chia nhóm) Khi nào =3x ? Khi nào =-3x ? Khi nào =x-3 ? Khi nào =-(x-3) ? Hãy làm bài ?2 (gọi hs lên bảng) = a khi a0 =-a khi a<0 =3, , =4,5 x-30 =x-3 -2x<0 =-(-2x)=2x a) Khi x0 thì -3x0 nên =-3x. Vậy C=-3x+7x-4= 4x-4 b) Khi x<6 thì x-6<0 nên =-(x-6)=6-x. Vậy D=5-4x +6-x=11-5x Khi 3x0 hay x0 Khi 3x<0 hay x<0 Khi x-30 hay x3 Khi x-3<0 hay x<3 a) Khi x+50 hay x-5 : x+5= 3x+1-2x=-4x=2 Khi x+5<0 hay x<-5 : -x-5= 3x+1-4x=6x= (loại) Vậy S= b) Khi -5x0 hay x0 : -5x= 2x+21-7x=21x=-3 Khi -5x0 : 5x= 2x+213x=21x=7 Vậy S= IV. VẬN DỤNG - CŨNG CỐ ( PH) TG NỘI DUNG HOẠT ĐỘNG GV HOẠT ĐỘNG HS a) Khi x0 thì 5x0 nên =5x. Vậy A=3x+2+5x=8x+2 Khi x<0 thì 5x<0 nên =-5x. Vậy A=3x+2-5x=2-2x a) Khi 2x0 hay x0 : 2x=x-6 x=-6 (loại) Khi 2x<0 hay x<0 : -2x=x-6 -3x=-6x=2 (loại) Vậy S=Ỉ b) Khi -3x0 hay x0 : -3x=x-8 -4x=-8x=2 (loại) Khi -3x0 : 3x=x-8 2x=-8x=-4 (loại) Vậy S=Ỉ ãy làm bài 35a trang 51 Hãy làm bài 35c trang 51 Hãy làm bài 36a trang 51 Hãy làm bài 36b trang 51 V. HƯỚNG DẨN VỀ NHÀ ( 1 ph) Học bài : Bài tập : Làm các bài tập còn lại

Bạn đang đọc nội dung bài viết Đồ Thị Hàm Số Chứa Giá Trị Tuyệt Đối trên website Techcombanktower.com. Hy vọng một phần nào đó những thông tin mà chúng tôi đã cung cấp là rất hữu ích với bạn. Nếu nội dung bài viết hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!