Đề Xuất 5/2023 # Các Dạng Bài Tập Giá Trị Tuyệt Đối Và Cách Giải # Top 12 Like | Techcombanktower.com

Đề Xuất 5/2023 # Các Dạng Bài Tập Giá Trị Tuyệt Đối Và Cách Giải # Top 12 Like

Cập nhật nội dung chi tiết về Các Dạng Bài Tập Giá Trị Tuyệt Đối Và Cách Giải mới nhất trên website Techcombanktower.com. Hy vọng thông tin trong bài viết sẽ đáp ứng được nhu cầu ngoài mong đợi của bạn, chúng tôi sẽ làm việc thường xuyên để cập nhật nội dung mới nhằm giúp bạn nhận được thông tin nhanh chóng và chính xác nhất.

Vậy làm sao để giải các dạng bài tập giá trị tuyệt đối chính xác? Chắc chắn chúng ta phải rèn kỹ năng giải toán bằng cách làm thật nhiều bài tập dạng này. Bài viết này chúng ta cùng ôn lại các dạng toán giá trị tuyệt đối ở chương trình toán lớp 7.

I. Kiến thức về Giá trị tuyệt đối cần nhớ

* Hai số bằng nhau hoặc đối nhau thì có giá trị tuyệt đối bằng nhau. Ngược lại hai số có giá trị tuyệt đối bằng nhau thì chúng là hai số bằng nhau hoặc đối nhau. Tức là:

* Mọi số đều lớn hơn hoặc bằng đối của giá trị tuyệt đối của nó và đồng thời nhỏ hơn hoặc bằng giá trị tuyệt đối của nó. Tức là:

* Trong hai số âm, số nào nhỏ hơn thì có giá trị tuyệt đối lớn hơn:

* Trong hai số dương, số nào nhỏ hơn thì có giá trị tuyệt đối nhỏ hơn:

* Giá trị tuyệt đối của một tích bằng tích các giá trị tuyệt đối:

* Giá trị tuyệt đối của một thương bằng thương hai giá trị tuyệt đối:

* Bình phương của giá trị tuyệt đối của một số bằng bình phương số đó:

* Tổng hai giá trị tuyệt đối của hai số luôn lớn hơn hoặc bằng giá trị tuyệt đối của hai số, dấu bằng xảy ra khi và chỉ khi hai số cùng dấu:

II. Các dạng Bài tập Giá trị tuyệt đối

⇒ A = (x – 3,5) + (4,5 – x) = 1

⇒ B = (x – 3,5) + (4,5 – x) = 1.

– Nếu k < 0 thì không có giá trị nào của x thỏa mãn đẳng thức (trị tuyệt đối của mọi số đều không âm).

– Kết luận: Có 2 giá trị của x thỏa điều kiện là x = 1 hoặc x = 3/4.

– Vậy có 2 giá trị x thỏa yêu cầu bài toán là x = 4 hoặc x = -0,6.

– Kết luận: Vậy x = -5/12 hoặc x = -13/12 thỏa.

– Vậy x = 2 và x = 0 thỏa điều kiện bài toán

– Vậy x = 1 và x = 0 thỏa điều kiện bài toán.

1- Điều kiện B(x)≥0

3- Tìm x rồi đối chiếu x với điều kiện B(x)≥0 rồi kết luận.

– TH1: Nếu A(x)≥0 thì (*) trở thành A(x) = B(x) (sau khi tìm được x đối chiếu x với điều kiện A(x)≥0)

– TH2: Nếu A(x)<0 thì (*) trở thành -A(x) = B(x) (sau khi tìm được x đối chiếu x với điều kiện A(x)<0)

– Đối chiếu với điều kiện x≤5/2 thì chỉ có x=2 thỏa, x = 8/3 loại

– Kết luận: Vậy x = 2 là giá trị cần tìm.

¤ TH1: (x – 3) ≥ 0 ⇒ x ≥ 3. Ta có:

(*) trở thành (x – 3) = 5 – 2x ⇒ 3x = 8 ⇒ x = 8/3

Đối chiếu điều kiện ta thấy x = 8/3 < 3 nên loại.

¤ TH2: (x – 3) < 0 ⇒ x < 3. Ta có:

(*) trở thành -(x – 3) = 5 – 2x ⇒ -x + 3 = 5 – 2x ⇒ x = 2

Đối chiếu điều kiện ta thấy x = 2 < 3 nên nhận.

– Kết luận: Vậy x = 2 là giá trị cần tìm.

* Nhận xét: Ở dạng này thường giải theo cách 1 bài toán gọn hơn, các em lưu ý đối chiếu lại giá trị x tìm được với điều kiện.

III. Một số bài tập về giá trị tuyệt đối

– Vận dụng phương pháp giải các dạng toán trị tuyệt đối ở trên các em hãy làm các bài tập sau:

* Bài 1: Rút gọn biểu thức với x < -1,5

* Bài 2: Rút gọn biểu thức sau

Đến đây có lẽ các em đã nắm được cơ bản tính chất của trị tuyệt đối cách vận dụng giải một số bài toán tìm x trong bài toán có dấu trị tuyệt đối.

Thực tế còn khá nhiều bài toán dựa vào tính không âm của trị tuyệt đối như tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức và các bài toán hỗn hợp khác mà có thể HayHocHoi sẽ cập nhật sau.

Chuyên Đề: Giá Trị Tuyệt Đối

Chuyên đề: GIÁ TRỊ TUYỆT ĐỐI I. Lý thuyết *Định nghĩa: Khoảng cách từ điểm a đến điểm 0 trên trục số là giá trị tuyệt đối của một số a( a là số thực) * Giá trị tuyệt đối của số không âm là chính nó, giá trị tuyệt đối của số âm là số đối của nó. TQ: Nếu Nếu *Tính chất Giá trị tuyệt đối của mọi số đều không âm TQ: với mọi a Î R Cụ thể: =0 a=0 ≠ 0 a ≠ 0 * Hai số bằng nhau hoặc đối nhau thì có giá trị tuyệt đối bằng nhau, và ngược lại hai số có giá trị tuyệt đối bằng nhau thì chúng là hai số bằng nhau hoặc đối nhau. TQ: * Mọi số đều lớn hơn hoặc bằng đối của giá trị tuyệt đối của nó và đồng thời nhỏ hơn hoặc bằng giá trị tuyệt đối của nó. TQ: và * Trong hai số âm số nào nhỏ hơn thì có giá trị tuyệt đối lớn hơn TQ: Nếu * Trong hai số dương số nào nhỏ hơn thì có giá trị tuyệt đối nhỏ hơn TQ: Nếu * Giá trị tuyệt đối của một tích bằng tích các giá trị tuyệt đối. TQ: * Giá trị tuyệt đối của một thương bằng thương hai giá trị tuyệt đối. TQ: * Bình phương của giá trị tuyệt đối của một số bằng bình phương số đó. TQ: * Tổng hai giá trị tuyệt đối của hai số luôn lớn hơn hoặc bằng giá trị tuyệt đối của hai số, dấu bằng xảy ra khi và chỉ khi hai số cùng dấu. TQ: và II. Các dạng toán : I. Tìm giá trị của x thoả mãn đẳng thức có chứa dấu giá trị tuyệt đối: 1. Dạng 1: ( Trong đó A(x) là biểu thức chứa x, k là một số cho trước ) * Cách giải: - Nếu k < 0 thì không có giá trị nào của x thoả mãn đẳng thức( Vì giá trị tuyệt đối của mọi số đều không âm ) - Nếu k = 0 thì ta có Bài 1.1: Tìm x, biết: a) b) c) d) Bài 1.2: Tìm x, biết: a) b) c) Bài 1.3: Tìm x, biết: a) b) c) d) Bài 1.4: Tìm x, biết: a) b) c) d) Bài 1.5: Tìm x, biết: a) b) c) d) 2. Dạng 2: ( Trong đó A(x) và B(x) là hai biểu thức chứa x ) * Cách giải: Vận dụng tính chất: ta có: Bài 2.1: Tìm x, biết: a) b) c) d) Bài 2.2: Tìm x, biết: a) b) c) d) 3. Dạng 3: ( Trong đó A(x) và B(x) là hai biểu thức chứa x ) * Cách 1: Ta thấy nếu B(x) < 0 thì không có giá trị nào của x thoả mãn vì giá trị tuyệt đối của mọi số đều không âm. Do vậy ta giải như sau: (1) Điều kiện: B(x) (*) (1) Trở thành ( Đối chiếu giá tri x tìm được với điều kiện ( * ) * Cách 2: Chia khoảng xét điều kiện bỏ dấu giá trị tuyệt đối: Nếu Nếu Ta giải như sau: (1) Nếu A(x) thì (1) trở thành: A(x) = B(x) ( Đối chiếu giá trị x tìm được với điều kiện ) Nếu A (x ) < 0 thì (1) trở thành: - A(x) = B(x) ( Đối chiếu giá trị x tìm được với điều kiện ) Bài 3.1: Tìm x, biết: a) b) c) d) Bài 3.2: Tìm x, biết: a) b) c) d) Bài 3.3: Tìm x, biết: a) b) c) d) Bài 3.4: Tìm x, biết: a) b) c) d) Bài 3.5: Tìm x, biết: a) b) c) d) 4. Dạng 4: Đẳng thức chứa nhiều dấu giá trị tuyệt đối: * Cách giải: Lập bảng xét điều kiện bỏ dấu giá trị tuyệt đối: Căn cứ bảng trên xét từng khoảng giải bài toán ( Đối chiếu điều kiện tương ứng ) Bài 4.1: Tìm x, biết: a) b) c) d) Bài 4.2: Tìm x, biết: a) c) d) e) f) Bài 4.3: Tìm x, biết: a) b) c) d) e) f) Bài 4.4: Tìm x, biết: a) b) c) d) 5. Dạng 5: Xét điều kiện bỏ dấu giá trị tuyệt đối hàng loạt: (1) Điều kiện: D(x) kéo theo Do vậy (1) trở thành: A(x) + B(x) + C(x) = D(x) Bài 5.1: Tìm x, biết: a) b) c) d) Bài 5.2: Tìm x, biết: a) b) c) d) 6. Dạng 6: Dạng hỗn hợp: Bài 6.1: Tìm x, biết: a) b) c) Bài 6.2: Tìm x, biết: a) b) c) Bài 6.3: Tìm x, biết: a) b) c) Bài 6.4: Tìm x, biết: a) b) c) 7. Dạng 7: Vận dụng tính chất không âm của giá trị tuyệt đối dẫn đến phương pháp bất đẳng thức. * Nhận xét: Tổng của các số không âm là một số không âm và tổng đó bằng 0 khi và chỉ khi các số hạng của tổng đồng thời bằng 0. * Cách giải chung: B1: đánh giá: B2: Khẳng định: Bài 7.1: Tìm x, y thoả mãn: a) b) c) Bài 7.2: Tìm x, y thoả mãn: a) b) c) * Chú ý1: Bài toán có thể cho dưới dạng nhưng kết quả không thay đổi * Cách giải: (1) (2) Từ (1) và (2) Bài 7.3: Tìm x, y thoả mãn: a) b) c) Bài 7.4: Tìm x, y thoả mãn: a) b) c) * Chú ý 2: Do tính chất không âm của giá trị tuyệt đối tương tự như tính chất không âm của luỹ thừa bậc chẵn nên có thể kết hợp hai kiến thức ta cũng có các bài tương tự. Bài 7.5: Tìm x, y thoả mãn đẳng thức: a) b) c) d) Bài 7.6: Tìm x, y thoả mãn : a) b) c) d) Bài 7.7: Tìm x, y thoả mãn: a) b) c) d) 8. Dạng 8: * Cách giải: Sử dụng tính chất: Từ đó ta có: Bài 8.1: Tìm x, biết: a) b) c) d) e) f) Bài 8.2: Tìm x, biết: a) b) c) d) e) f) Bài 2: Tìm x, y thoả mãn : a) Bài 3: Tìm x, y thoả mãn: a) Bài 4: Tìm x thoả mãn: a) II Tìm cặp giá trị ( x; y ) nguyên thoả mãn đẳng thức chứa dấu giá trị tuyệt đối: 1. Dạng 1: với * Cách giải: * Nếu m = 0 thì ta có (1) Do nên từ (1) ta có: từ đó tìm giá trị của và tương ứng . Bài 1.1: Tìm cặp số nguyên ( x, y) thoả mãn: a) b) c) Bài 1.2: Tìm cặp số nguyên ( x, y) thoả mãn: a) b) c) Bài 1.3: Tìm cặp số nguyên (x, y ) thoả mãn: a) b) c) d) Bài 1.4: Tìm cặp số nguyên ( x, y ) thoả mãn: a) b) c) d) Bài 1.5: Tìm các cặp số nguyên ( x, y ) thoả mãn: a) b) c) d) * Cách giải: Đánh giá (1) (2) Từ (1) và (2) từ đó giải bài toán như dạng 1 với Bài 2.1: Tìm các cặp số nguyên ( x, y ) thoả mãn: a) b) c) d) Bài 2.2: Tìm các cặp số nguyên ( x, y ) thoả mãn: a) b) c) d) 3. Dạng 3: Sử dụng bất đẳng thức: xét khoảng giá trị của ẩn số. Bài 3.1: Tìm các số nguyên x thoả mãn: a) b) c) d) Bài 3.2: Tìm các cặp số nguyên ( x, y) thoả mãn đồng thời các điều kiện sau. a) x + y = 4 và b) x +y = 4 và c) x –y = 3 và d) x – 2y = 5 và Bài 3.3: Tìm các cặp số nguyên ( x, y ) thoả mãn đồng thời: a) x + y = 5 và b) x – y = 3 và c) x – y = 2 và d) 2x + y = 3 và 4. Dạng 4: Kết hợp tính chất không âm của giá trị tuyệt đối và dấu của một tích: * Cách giải : Đánh giá: tìm được giá trị của x. Bài 4.1: Tìm các số nguyên x thoả mãn: a) b) c) d) Bài 4.2: Tìm các cặp số nguyên ( x, y ) thoả mãn: a) b) c) Bài 4.3: Tìm các cặp số nguyên ( x, y ) thoả mãn: a) b) c) 5. Dạng 5: Sử dụng phương pháp đối lập hai vế của đẳng thức: * Cách giải: Tìm x, y thoả mãn đẳng thức: A = B Đánh giá: (1) Đánh giá: (2) Từ (1) và (2) ta có: Bài 5.1: Tìm các cặp số nguyên ( x, y ) thoả mãn: a) b) c) d) Bài 5.2: Tìm các cặp số nguyên ( x, y ) thoả mãn: a) b) c) d) Bài 5.3: Tìm các cặp số nguyên ( x, y ) thoả mãn: a) b) c) d) III – Rút gọn biểu thức chứa dấu giá trị tuyệt đối: Cách giải chung: Xét điều kiện bỏ dấu giá trị tuyệt đối rồi thu gọn: Bài 1: Rút gọn biểu thức sau với a) b) Bài 2: Rút gọn biểu thức sau khi x < - 1,3: a) b) Bài 3: Rút gọn biểu thức: a) b) c) Bài 4: Rút gọn biểu thức khi a) b) Bài 5: Rút gọn biểu thức: a) với x < - 0,8 b) với ==============&=&=&============== IV.Tính giá trị biểu thức: Bài 1: Tính giá trị của biểu thức: a) M = a + 2ab – b với b) N = với Bài 2: Tính giá trị của biểu thức: a) với b) với c) với d) với Bài 3: Tính giá trị của các biểu thức: a) với b) với c) với x = 4 d) với V.Tìm giá trị lớn nhất – nhỏ nhất của một biểu thức chứa dấu giá trị tuyệt đối: 1. Dạng 1: Sử dụng tính chất không âm của giá trị tuyệt đối: * Cách giải chủ yếu là từ tính chất không âm của giá trị tuyệt đối vận dụng tính chất của bất đẳng thức để đánh giá giá trị của biểu thức: Bài 1.1: Tìm giá trị lớn nhất của các biểu thức: a) b) c) d) e) f) g) h) i) k) l) m) n) Bài 1.2: Tìm giá trị nhỏ nhất của biểu thức: a) b) c) d) e) f) g) h) i) k) l) m) Bài 1.3: Tìm giá trị lớn nhất của biểu thức: a) b) c) d) e) Bài 1.4: Tìm giá trị lớn nhất của biểu thức: a) b) c) Bài 1.5: Tìm giá trị nhỏ nhất của biểu thức: a) b) c) Bài 1.6: Tìm giá trị nhỏ nhất của biểu thức: a) b) c) 2. Dạng 2: Xét điều kiện bỏ dấu giá trị tuyệt đối xác định khoảng giá trị của biểu thức: Bài 2.1: Tìm giá trị nhỏ nhất của biểu thức: a) b) c) d) e) f) Bài 2.2: Tìm giá trị nhỏ nhất của biểu thức: a) b) c) Bài 2.3: Tìm giá trị lớn nhất của biểu thức: a) b) c) Bài 2.4: Tìm giá trị lớn nhất của biểu thức: a) b) c) Bài 2.5: Tìm giá trị nhỏ nhất của biểu thức: a) b) c) 3. Dạng 3: Sử dụng bất đẳng thức Bài 3.1: Tìm giá trị nhỏ nhất của biểu thức: a) b) c) Bài 3.2: Tìm giá trị nhỏ nhất của biểu thức: a) b) c) Bài 3.3: Tìm giá trị nhỏ nhất của biểu thức: a) b) c) d) Bài 3.4: Cho x + y = 5 tìm giá trị nhỏ nhất của biểu thức: Bài 3.5: Cho x – y = 3, tìm giá trị của biểu thức: Bài 3.6: Cho x – y = 2 tìm giá trị nhỏ nhất của biểu thức: Bài 3.7: Cho 2x+y = 3 tìm giá trị nhỏ nhất của biểu thức:

Phương Pháp Giải Các Phương Trình Chứa Ẩn Dưới Dấu Giá Trị Tuyệt Đối

Phương pháp giải các phương trình chứa ẩn dưới dấu giá trị tuyệt đối

I. Lý thuyết

1. Định nghĩa:

f(x) \ -f(x) \ end{matrix}begin{matrix} khi \ khi \ end{matrix} right.begin{matrix} f(x)ge 0 \ f(x)<0 \ end{matrix}]

2. Dấu nhị thức bậc nhất: f(x)=ax+b

3. Dấu tam thức bậc 2: $mathbf{f}left( mathbf{x} right)=text{ }mathbf{a}{{mathbf{x}}^{mathbf{2}}}+mathbf{bx}+mathbf{c}$

a.f(x)<0;forall xin left( {{x}_{1}};{{x}_{2}} right) \ end{matrix} right.$

Với x1; x2 là nghiệm của f(x)=0 và x1<x2.

II. Một số dạng bài tập

Phương pháp:

A=0 \ B=0 \ end{matrix} right.$

Ví dụ 1.

Giải

Giải

$begin{align} & Leftrightarrow left{ begin{matrix} {{x}^{2}}+x-2=0 \ {{x}^{2}}-1=0 \ end{matrix} right. \ & Leftrightarrow left{ begin{matrix} left[ begin{matrix} x=1 \ x=-2 \ end{matrix} right. \ left[ begin{matrix} x=1 \ x=-1 \ end{matrix} right. \ end{matrix} right. \ & Leftrightarrow x=1 \ end{align}$

Phương pháp giải:

$PTRightarrow {{A}^{2}}={{B}^{2}}Leftrightarrow left[ begin{matrix} A=B \ A=-B \ end{matrix} right.$

Giải

$PTRightarrow {{left( 2x+1 right)}^{2}}={{left( x+2 right)}^{2}}Leftrightarrow left[ begin{matrix} 2x+1=x+2 \ 2x+1=-left( x+2 right) \ end{matrix}Leftrightarrow right.left[ begin{matrix} x=1text{ } \ x=-1 \ end{matrix} right.$

Phương pháp giải:

Cách 1: $PTLeftrightarrow left{ begin{matrix} Bge 0 \ {{A}^{2}}={{B}^{2}} \ end{matrix} right.Leftrightarrow left{ begin{matrix} Bge 0 \ left[ begin{matrix} A=B \ A=-B \ end{matrix} right. \ end{matrix} right.$

Cách 2: $PTLeftrightarrow left[ begin{matrix} left{ begin{matrix} Age 0 \ A=B \ end{matrix} right. \ left{ begin{matrix} A<0 \ -A=B \ end{matrix} right. \ end{matrix} right.$

Cách 3: $PTRightarrow {{A}^{2}}={{B}^{2}}Leftrightarrow left[ begin{matrix} A=B \ A=-B \ end{matrix} right.$

đây là phương trình hệ quả, giải phương trình tìm nghiệm thử lại phương trình ban đầu rồi kết luận nghiệm.

Ví dụ 1:

Giải:

Cách 1:

$begin{array}{l} PT Leftrightarrow left{ {begin{array}{*{20}{c}} {x + 2 ge 0}\ {{{left( {2x + 1} right)}^2} = {{left( {x + 2} right)}^2}} end{array}} right.\ Leftrightarrow left{ {begin{array}{*{20}{c}} {x ge – 2}\ {left[ {begin{array}{*{20}{c}} {2x + 1 = x + 2}\ {2x + 1 = – left( {x + 2} right)} end{array}} right.} end{array}} right.\ Leftrightarrow left{ {begin{array}{*{20}{c}} {x ge – 2}\ {left[ {begin{array}{*{20}{c}} {x = 1{rm{ }}}\ {x = – 1} end{array}} right.} end{array}} right.\ Leftrightarrow x = pm 1 end{array}$

Cách 2:

$begin{align} & PTLeftrightarrow left[ begin{matrix} left{ begin{matrix} 2x+1ge 0 \ 2x+1=x+2 \ end{matrix} right. \ left{ begin{matrix} 2x+1<0 \ -(2x+1)=x+2 \ end{matrix} right. \ end{matrix} right. \ & Leftrightarrow left[ begin{matrix} left{ begin{matrix} xge -frac{1}{2} \ x=1(nhan) \ end{matrix} right. \ left{ begin{matrix} x<-frac{1}{2} \ x=-1(nhan) \ end{matrix} right. \ end{matrix} right. \ & Leftrightarrow x=pm 1 \ end{align}$

Cách 3:

$PTRightarrow {{left( 2x+1 right)}^{2}}={{left( x+2 right)}^{2}}Leftrightarrow left[ begin{matrix} 2x+1=x+2 \ 2x+1=-left( x+2 right) \ end{matrix}Leftrightarrow right.left[ begin{matrix} x=1text{ } \ x=-1 \ end{matrix} right.$

Thử nghiệm vào phương trình đầu ta được $x = pm 1$ là nghiệm

Ví dụ 2:

Giải:

Trường hợp 1: $2-5xge 0Leftrightarrow xle frac{2}{5}$

Phương trình có dạng: $2-5x=x+1Leftrightarrow 6x=1Leftrightarrow x=frac{1}{6}$ .

Kết hợp điều kiện: $x=frac{1}{6}$ là nghiệm (1)

Trường hợp 2: $2-5x<0Leftrightarrow

Phương trình có dạng: $5x-2=x+1Leftrightarrow 4x=3Leftrightarrow x=frac{3}{4}$

Kết hợp điều kiện: $x=frac{3}{4}$ là nghiệm (2)

Từ (1) và (2) suy ra Phương trình có nghiệm : $x=frac{1}{6};x=frac{3}{4}$.

Phương pháp 1.

Khử dấu trị tuyệt đối bằng định nghĩa. Giải phương trình trên từng khoảng.

Phương pháp 2.

Ví dụ 1:

Giải

Cách 1. Khử trị tuyệt đối bằng định nghĩa.

Trường hợp 1: $x-3ge 0Leftrightarrow xge 3$

Phương trình có dạng: ${{x}^{2}}-x-2=0Leftrightarrow left[ begin{matrix} x=-1 \ x=2 \ end{matrix} right.$ Kết hợp điều kiện: $x=phi $ (1).

Trường hợp 2: $x-3<0Leftrightarrow x<3$

Phương trình có dạng: ${x^2} + x – 8 = 0 Leftrightarrow left[ {begin{array}{*{20}{c}} {x = frac{{ – 1 – sqrt {33} }}{2}{rm{;}}}\ {x = frac{{ – 1 + sqrt {33} }}{2}{rm{;}}} end{array}} right.$

Kết hợp điều kiện: $x=frac{-1-sqrt{33}}{2};x=frac{-1+sqrt{33}}{2}$ (2)

Từ (1) và (2) suy ra bất phương trình có nghiệm: $x=frac{-1pm sqrt{33}}{2}$.

Cách 2. Biến đổi tương đương.

$begin{array}{l} Leftrightarrow left{ {begin{array}{*{20}{c}} {{x^2} – 5 ge 0}\ {left[ {begin{array}{*{20}{c}} {x – 3 = {x^2} – 5}\ {x – 3 = – ({x^2} – 5)} end{array}} right.} end{array}} right.\ Leftrightarrow left{ {begin{array}{*{20}{c}} {{x^2} – 5 ge 0}\ {left[ {begin{array}{*{20}{c}} {{x^2} – x – 2 = 0}\ {{x^2} + x – 8 = 0} end{array}} right.} end{array}} right.\ Leftrightarrow left{ {begin{array}{*{20}{c}} {{x^2} – 5 ge 0(*)}\ {left[ {begin{array}{*{20}{c}} {x = – 1}\ begin{array}{l} x = 2\ x = frac{{ – 1 pm sqrt {33} }}{2} end{array} end{array}} right.} end{array}} right.\ Leftrightarrow x = x = frac{{ – 1 pm sqrt {33} }}{2} end{array}$

Lưu ý: Khi tìm được nghiệm của các phương trình, sử dụng máy tính kiểm tra điều kiện (*). Nghiệm nào thỏa mãn thì nhận. Không nhất thiết phải giải (*).

Phương pháp Bảng:

Áp dụng định nghĩa khử giá trị tuyệt đối bằng xét dấu biểu thức bên trong dấu giá trị tuyệt đối. Giải phương trình ứng với từng khoảng xác định.

Ví dụ 1:  

Giải bất

Giải

Trước tiên ta lưu ý:

Bước 1. Lập bảng khử trị tuyệt đối vế trái.

Bước 2. Từ bảng khử trị tuyệt đối ta có các trường hợp sau:

• Với $xin left( -infty ;1 right)$ : Phương trình $(*)Leftrightarrow left{ begin{matrix} xle 1 \ 4-2x=x+1 \ end{matrix} right.Leftrightarrow left{ begin{matrix} xle 1 \ 3x=3 \ end{matrix} right.Leftrightarrow left{ begin{matrix} xle 1 \ x=1 \ end{matrix} right.Leftrightarrow x=1$ (1)

Với $1<x<3$ :

Phương trình $(*) Leftrightarrow left{ {begin{array}{*{20}{c}} {1

• Với $xge 3$ : Phương trình $(*)Leftrightarrow left{ begin{matrix} xge 3 \ 2x-4=x+1 \ end{matrix} right.Leftrightarrow left{ begin{matrix} xge 3 \ x=5 \ end{matrix} right.Leftrightarrow x=5$ (3)

Ví dụ 2:

Giải

Bước 1: Lập bảng phá trị tuyệt đối vế trái

Bước 2: Dựa vào bảng trên ta có các trường hợp sau:

* Trường hợp 1: Với $x<frac{1}{4}$ Phương trình $(*)Leftrightarrow left{ begin{matrix} x<frac{1}{4} \ 1-4x=x+2 \ end{matrix} right.Leftrightarrow left{ begin{matrix} x<frac{1}{4} \ 5x=-1 \ end{matrix} right.Leftrightarrow left{ begin{matrix} x<frac{1}{4} \ x=-frac{1}{5} \ end{matrix} right.Leftrightarrow x=-frac{1}{5}$ (1) * Trường hợp 2: Với $frac{1}{4}le x<1$ Phương trình $(*)Leftrightarrow left{ begin{matrix} frac{1}{4}le x<1 \ 4x-1=x+2 \ end{matrix} right.Leftrightarrow left{ begin{matrix} frac{1}{4}le x<1 \ 3x=3 \ end{matrix} right.Leftrightarrow left{ begin{matrix} frac{1}{4}le x<1 \ x=1 \ end{matrix} right.Leftrightarrow x=phi $ (2) * Trường hợp 3: Với $xge 1$ Phương trình $(*)Leftrightarrow left{ begin{matrix} xge 1 \ 2x+1=x+2 \ end{matrix} right.Leftrightarrow left{ begin{matrix} xge 1 \ x=1 \ end{matrix}Leftrightarrow right.x=1$ (3) Từ (1), (2) và (3) suy ra phương trình có nghiệm: $x=-frac{1}{5};x=1$.

Lưu ý: Nếu các biểu thức trong dấu trị tuyệt đối là bậc 2. Ta lập bảng sử dụng dấu tam thức bậc 2.

Bài tập thực hành:

Giải phương trình sau:

Download tài liệu: PDF-Tại đây Worrd-Tại đây

———————-

Phương pháp giải phương trình có ẩn dưới dấu căn bậc hai.

———————–

Đồ Thị Hàm Số Chứa Giá Trị Tuyệt Đối

Published on

1. ĐỒ THỊ HÀM SỐ CHỨA GIÁ TRỊ TUYỆT ĐỐI Dạng 1. Đồ Thị Hàm A. Kiến thức . Đề bài : Cho hàm số y=f(x) có đồ thị (C) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1) Ta có Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : – Giữ nguyên phần đồ thị của (C) nằm trên trục hoành ( do (1) ) – Lấy đối xứng qua trục hoành phần đồ thị (C) nằm dưới trục hoành (do (2)Câu 1. Cho hàm số (C)1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1) Ta có Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : – Giữ nguyên phần đồ thị của (C) nằm trên trục hoành ( do (1) ) – Lấy đối xứng qua trục hoành phần đồ thị (C) nằm dưới trục hoành (do (2))Câu 2. Cho hàm số (C)

2. 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1) Ta có Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : – Giữ nguyên phần đồ thị của (C) nằm trên trục hoành ( do (1) ) – Lấy đối xứng qua trục hoành phần đồ thị (C) nằm dưới trục hoành (do (2))Câu 3. Cho hàm số (C)1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1) Ta có Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : – Giữ nguyên phần đồ thị của (C) nằm trên trục hoành ( do (1) ) – Lấy đối xứng qua trục hoành phần đồ thị (C) nằm dưới trục hoành (do (2))

3. Dạng 2. Đồ Thị Hàm A. Kiến thức . Đề bài : Cho hàm số y=f(x) có đồ thị (C) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1) Ta có Ta lại có hàm số là hàm chẵn nên (C1) đối xứng qua trục tung (3) Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : – Giữ nguyên phần đồ thị của (C) nằm bên phải trục tung ( do (1) ) – Lấy đối xứng qua trục tung phần đồ thị (C) nằm bên phải trục tung (do (3))Câu 4. Cho hàm số (C)1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1) Ta có Ta lại có hàm số là hàm chẵn nên (C1) đối xứng qua trục tung (3) Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : – Giữ nguyên phần đồ thị của (C) nằm bên phải trục tung ( do (1) ) – Lấy đối xứng qua trục tung phần đồ thị (C) nằm bên phải trục tung (do (3))

4. Câu 5. Cho hàm số (C)1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1) Ta có Ta lại có hàm số là hàm chẵn nên (C1) đối xứng qua trục tung (3) Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : – Giữ nguyên phần đồ thị của (C) nằm bên phải trục tung ( do (1) ) – Lấy đối xứng qua trục tung phần đồ thị (C) nằm bên phải trục tung (do (3))

5. Dạng 3. Đồ Thị Hàm A. Kiến thức . Đề bài : Cho hàm số y=f(x) có đồ thị (C) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C2) Ta vẽ từ trong ra ngoài  Vẽ đồ thị hàm có đồ thị (C1) Ta có Ta lại có hàm số là hàm chẵn nên (C1) đối xứng qua trục tung (3) Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : – Giữ nguyên phần đồ thị của (C) nằm bên phải trục tung ( do (1) ) – Lấy đối xứng qua trục tung phần đồ thị (C) nằm bên phải trục tung (do (3))  Vẽ đồ thị hàm có đồ thị (C2) Ta có Do đó đồ thị hàm số (C2) được suy từ đồ thị hàm số (C1) như sau : – Giữ nguyên phần đồ thị của (C1) nằm trên trục hoành ( do (4) ) – Lấy đối xứng qua trục hoành phần đồ thị (C1) nằm dưới trục hoành (do (5))Câu 6. Cho hàm số (C)1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1) Ta vẽ từ trong ra ngoài  Vẽ đồ thị hàm có đồ thị (C1) Ta có Ta lại có hàm số là hàm chẵn nên (C1) đối xứng qua trục tung (3) Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : – Giữ nguyên phần đồ thị của (C) nằm bên phải trục tung ( do (1) ) – Lấy đối xứng qua trục tung phần đồ thị (C) nằm bên phải trục tung (do (3))

6.  Vẽ đồ thị hàm có đồ thị (C2) Ta có Do đó đồ thị hàm số (C2) được suy từ đồ thị hàm số (C1) như sau : – Giữ nguyên phần đồ thị của (C1) nằm trên trục hoành ( do (4) ) – Lấy đối xứng qua trục hoành phần đồ thị (C1) nằm dưới trục hoành (do (5))Câu 7. Cho hàm số (C)1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C2) Ta vẽ từ trong ra ngoài

7.  Vẽ đồ thị hàm có đồ thị (C1)Ta cóTa lại có hàm số là hàm chẵn nên (C1) đối xứng qua trục tung (3)Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : – Giữ nguyên phần đồ thị của (C) nằm bên phải trục tung ( do (1) )- Lấy đối xứng qua trục tung phần đồ thị (C) nằm bên phải trục tung (do (3))  Vẽ đồ thị hàm có đồ thị (C2)Ta cóDo đó đồ thị hàm số (C2) được suy từ đồ thị hàm số (C1) như sau :- Giữ nguyên phần đồ thị của (C1) nằm trên trục hoành ( do (4) )- Lấy đối xứng qua trục hoành phần đồ thị (C1) nằm dưới trục hoành (do (5))

8. Dạng 4. Đồ Thị Hàm A. Kiến thức . Đề bài : Cho hàm số y=u(x).v(x) có đồ thị (C) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1) Ta có Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : – Giữ nguyên phần đồ thị của (C) nằm trên miền ( do (1) ) – Lấy đối xứng qua trục hoành phần đồ thị (C) nằm trên miền (do (2))Câu 8. Cho hàm số (C)1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1) Tacó Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : – Giữ nguyên phần đồ thị của (C) nằm trên miền ( do (1) ) – Lấy đối xứng qua trục hoành phần đồ thị (C) nằm trên miền (do (2))Câu 9. Cho hàm số (C)1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1) Tacó Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau :

9. – Giữ nguyên phần đồ thị của (C) nằm trên miền ( do (1) ) – Lấy đối xứng qua trục hoành phần đồ thị (C) nằm trên miền( (do (2))Câu 10. Cho hàm số (C) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1) Ta có Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : – Giữ nguyên phần đồ thị của (C) nằm trên miền ( do (1) ) – Lấy đối xứng qua trục hoành phần đồ thị (C) nằm trên miền (do (2))Câu 11. Cho hàm số (C)1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1)

10. Ta có Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : – Giữ nguyên phần đồ thị của (C) nằm trên miền ( do (1) ) – Lấy đối xứng qua trục hoành phần đồ thị (C) nằm trên miền (do (2))Câu 12. Cho hàm số (C)1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1) Ta có Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : – Giữ nguyên phần đồ thị của (C) nằm trên miền ( do (1) ) – Lấy đối xứng qua trục hoành phần đồ thị (C) nằm trên miền (do (2))

11. Câu 13. Cho hàm số (C)1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1) Ta có Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : – Giữ nguyên phần đồ thị của (C) nằm trên miền ( do (1) ) – Lấy đối xứng qua trục hoành phần đồ thị (C) nằm trên miền (do (2)) Dạng 5. Đồ Thị Hàm

12. A. Kiến thức . Đề bài : Cho hàm số y=f(x) có đồ thị (C) 1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1) Ta có nhận trục hoành làm trục đối xứng (2) Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : – Giữ nguyên phần đồ thị của (C) nằm trên trục hoành ( do (1) ) – Lấy đối xứng qua trục hoành phần đồ thị (C) nằm trên trục hoành (do (2))Câu 14. Cho hàm số (C)1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1) Ta có nhận trục hoành làm trục đối xứng (2) Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : – Giữ nguyên phần đồ thị của (C) nằm trên trục hoành ( do (1) ) – Lấy đối xứng qua trục hoành phần đồ thị (C) nằm trên trục hoành (do (2))Câu 15. Cho hàm số (C)1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1) Ta có nhận trục hoành làm trục đối xứng (2) Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : – Giữ nguyên phần đồ thị của (C) nằm trên trục hoành ( do (1) ) – Lấy đối xứng qua trục hoành phần đồ thị (C) nằm trên trục hoành (do (2))

13. Câu 16. Cho hàm số (C)1) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2) Từ đồ thị (C) hãy vẽ đồ thị hàm số (C1) Ta có nhận trục hoành làm trục đối xứng (2) Do đó đồ thị hàm số (C1) được suy từ đồ thị hàm số (C) như sau : – Giữ nguyên phần đồ thị của (C) nằm trên trục hoành ( do (1) ) – Lấy đối xứng qua trục hoành phần đồ thị (C) nằm trên trục hoành (do (2))

14. x 1Câu 17. Cho hàm số : y (1) x 1 1. Khảo sát sự biến thiên và vẽ đồ thị hàm số (1) 2.Từ đồ thị hàm số (1) suy ra đồ thị hàm số (C1) Ta vẽ từ trong ra ngoài và từ phải qua trái: x 1 y x 1

Recommended

Bạn đang đọc nội dung bài viết Các Dạng Bài Tập Giá Trị Tuyệt Đối Và Cách Giải trên website Techcombanktower.com. Hy vọng một phần nào đó những thông tin mà chúng tôi đã cung cấp là rất hữu ích với bạn. Nếu nội dung bài viết hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất. Chúc bạn một ngày tốt lành!